93 resultados para analytical methodologies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic systems are a very good platform for sensing biological signals for fast point-of-care diagnostics or threat detection. One of the solutions is the lab-on-a-chip integrated circuit (IC), which is low cost and high reliability, offering the possibility for label-free detection. In recent years, similar integrated biosensors based on the conventional complementary metal oxide semiconductor (CMOS) technology have been reported. However, post-fabrication processes are essential for all classes of CMOS biochips, requiring biocompatible electrode deposition and circuit encapsulation. In this work, we present an amorphous silicon (a-Si) thin film transistor (TFT) array based sensing approach, which greatly simplifies the fabrication procedures and even decreases the cost of the biosensor. The device contains several identical sensor pixels with amplifiers to boost the sensitivity. Ring oscillator and logic circuits are also integrated to achieve different measurement methodologies, including electro-analytical methods such as amperometric and cyclic voltammetric modes. The system also supports different operational modes. For example, depending on the required detection arrangement, a sample droplet could be placed on the sensing pads or the device could be immersed into the sample solution for real time in-situ measurement. The entire system is designed and fabricated using a low temperature TFT process that is compatible to plastic substrates. No additional processing is required prior to biological measurement. A Cr/Au double layer is used for the biological-electronic interface. The success of the TFT-based system used in this work will open new avenues for flexible label-free or low-cost disposable biosensors. © 2013 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In microelectronics, the increase in complexity and the reduction of devices dimensions make essential the development of new characterization tools and methodologies. Indeed advanced characterization methods with very high spatial resolution are needed to analyze the redistribution at the nanoscale in devices and interconnections. The atom probe tomography has become an essential analysis to study materials at the nanometer scale. This instrument is the only analytical microscope capable to produce 3D maps of the distribution of the chemical species with an atomic resolution inside a material. This technique has benefit from several instrumental improvements during last years. In particular, the use of laser for the analysis of semiconductors and insulating materials offers new perspectives for characterization. The capability of APT to map out elements at the atomic scale with high sensitivity in devices meets the characterization requirements of semiconductor devices such as the determination of elemental distributions for each device region. In this paper, several examples will show how APT can be used to characterize and understand materials and process for advanced metallization. The possibilities and performances of APT (chemical analysis of all the elements, atomic resolution, planes determination, crystallographic information...) will be described as well as some of its limitations (sample preparation, complex evaporation, detection limit, ...). The examples illustrate different aspect of metallization: dopant profiling and clustering, metallic impurities segregation on dislocation, silicide formation and alloying, high K/metal gate optimization, SiGe quantum dots, as well as analysis of transistors and nanowires. © 2013 Elsevier B.V. All rights reserved.