106 resultados para ZM21 carburo di silicio SiC MMC extrusion magnesium
Resumo:
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
The performance of porous blocks containing three different reactive magnesia-based cements - namely magnesia alone, magnesium oxide: Portland cement (PC) in 1:1 ratio, cured in ambient conditions, and magnesia alone, cured at elevated carbon dioxide conditions, in hydrochloric acid and magnesium sulfate solution - was investigated. Different aggressive chemical solution conditions were used, to which the samples were exposed for up to 12 months and then tested for strength and microstructure. The performance was also compared with that of standard PC-based blocks. The results showed the significant resistance to chemical attack offered by magnesia, both alone and with PC blend in the porous blocks when cured under ambient carbon dioxide conditions, and confirmed the much poorer performance of blocks made from PC alone. The blocks of solely magnesia cured in elevated carbon dioxide conditions, at 20% concentration, showed slightly lower resistance to acid attack than PC; however, the resistance to sulfate attack was much higher. © 2012 Thomas Telford Ltd.
Resumo:
In recent years, Silicon Carbide (SiC) semiconductor devices have shown promise for high density power electronic applications, due to their electrical and thermal properties. In this paper, the performance of SiC JFETs for hybrid electric vehicle (HEV) applications is investigated at heatsink temperatures of 100 °C. The thermal runaway characteristics, maximum current density and packaging temperature limitations of the devices are considered and the efficiency implications discussed. To quantify the power density capabilities of power transistors, a novel 'expression of rating' (EoR) is proposed. A prototype single phase, half-bridge voltage source inverter using SiC JFETs is also tested and its performance at 25 °C and 100 °C investigated.
Resumo:
Silicon carbide (SiC) based MOS capacitor devices are used for gas sensing in high temperature and chemically reactive environments. A SiC MOS capacitor structure used as hydrogen sensor is defined and simulated. The effects of hydrogen concentration, temperature and interface traps on C-V characteristics were analysed. A comparison between structures with different oxide layer types (SiO2, TiO2 and ZnO) and thicknesses (50..10nm) was conducted. The TiO2 based structure has better performance than the SiO2 and ZnO structures. Also, the performance of the SiC MOS capacitor increases at thinner oxide layers. © 2012 IEEE.
Resumo:
Reactive magnesia (MgO) cements have emerged as a potentially more sustainable and technically superior alternative to Portland cement due to their lower production temperature and ability to sequester significant quantities of CO2. Porous blocks containing MgO were found to achieve higher strength values than PC blocks. A number of variables are investigated to achieve maximum carbonation and associated high strengths. This paper focuses on the impact of four different hydrated magnesium carbonates (HMCs) as cement replacements of either 20 or 50%. Accelerated carbonation (20 C, 70-90% RH, 20% CO2) is compared with natural curing (20 C, 60-70% RH, ambient CO2). SEM, TG/DTA, XRD, and HCl acid digestion are utilized to provide a thorough understanding of the performance of MgO-cement porous blocks. The presence of HMCs resulted in the formation of larger size carbonation products with a different morphology than those in the control mix, leading to significantly enhanced carbonation and strength. © 2013 Elsevier Ltd.
Resumo:
Upon heating, hydrated magnesium carbonates (HMCs) undergo a continuous sequence of decomposition reactions. This study aims to investigate the thermal decomposition of various commercially produced HMCs classified as light and heavy, highlight their differences, and provide an insight into their compositions in accordance with the results obtained from thermal analysis and microstructure studies. An understanding of the chemical compositions and microstructures, and a better knowledge of the reactions that take place during the decomposition of HMCs were achieved through the use of SEM, XRD, and TG/differential thermal analysis (DTA). The quantification of their CO 2 contents was provided by TG and dissolving the samples in HCl acid. Results show that variations exist within the microstructure and decomposition patterns of the two groups of HMCs, which do not exactly fit into the fixed stoichiometry of the known HMCs in the MgO-CO2-H2O system. The occurrence of an exothermic DTA peak was only observed for the heavy HMCs, which was attributed to their high CO2 contents and the relatively delayed decomposition pattern. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
This paper presents a critical comparison of static and switching performance of commercially available 1.2 kV SiC BJTs, MOSFETs and JFETs with 1.2 kV Si IGBTs. The experiments conducted are mainly focussed on investigating the temperature dependence of device performance. As an emerging commercial device, special emphasis is placed on SiC BJTs. The experimental data indicate that the SiC BJTs have relatively smaller conduction, off-state and turn-off switching losses, in comparison to the other devices. Furthermore, SiC BJTs have demonstrated much higher static current gain values in comparison to their silicon counterparts, thereby minimising driver losses. Based on the results, the suitability of SiC devices for high power density applications has been discussed. © 2013 IEEE.