154 resultados para Vertically rising aircraft
Resumo:
The best field emission properties from carbon nanotube cathodes were obtained when their heights, diameters and spacings were optimized. Field emission currents as high as 10 mA were obtained from 1 cm × 1 cm vertically aligned CNT cathode with optimized parameters grown using dc plasma CVD in situ. It was found that in order to obtain large emission current of >10 mA, space charge effects within the electron beam must be taken into account.
Resumo:
Surface roughness noise is a potentially important contributor to airframe noise. In this paper, noise assessment due to surface roughness is performed for a conceptual Silent Aircraft design SAX-40 by means of a prediction model developed in previous theoretical work and validated experimentally. Estimates of three idealized test cases show that surface roughness could produce a significant noise level above that due to the trailing edge at high frequencies. Roughness height and roughness density are the two most significant parameters influencing surface roughness noise, with roughness height having the dominant effect. The ratio of roughness height to boundary-layer thickness is the relevant non-dimensional parameter and this decreases in the streamwise direction. The candidate surface roughness is selected for SAX-40 to meet an aggressive noise target and keep surface roughness noise at a negligible level. Copyright © 2008 by Yu Liu and Ann P. Dowling.
Resumo:
The Silent Aircraft Initiative aims to provide a conceptual design for a large passenger aircraft whose noise would be imperceptible above the background level outside an urban airfield. Landing gear noise presents a significant challenge to such an aircraft. 1/10th scale models have been examined with the aim of establishing a lower noise limit for large aircraft landing gear. Additionally, the landing gear has been included in an integrated design concept for the 'Silent' Aircraft. This work demonstrates the capabilities of the closed-section Markham wind tunnel and the installed phased microphone arrays for aerodynamic and acoustic measurements. Interpretation of acoustic data has been enhanced by use of the CLEAN algorithm to quantify noise levels in a repeatable way and to eliminate side lobes which result from the microphone array geometry. Results suggest that highly simplified landing gears containing only the main struts offer a 12dBA reduction from modern gear noise. Noise treatment of simplified landing gear with fairings offers a further reduction which appears to be limited by noise from the lower parts of the wheels. The importance of fine details and surface discontinuities for low noise design are also underlined.
Resumo:
The Silent Aircraft airframe has a flying wing design with a large wing planform and a propulsion system embedded in the rear of the airframe with intake on the upper surface of the wing. In the present paper, boundary element calculations are presented to evaluate acoustic shielding at low frequencies. Besides the three-dimensional geometry of the Silent Aircraft airframe, a few two-dimensional problems are considered that provide some physical insight into the shielding calculations. Mean flow refraction effects due to forward flight motion are accounted for by a simple time transformation that decouples the mean-flow and acoustic-field calculations. It is shown that significant amount of shielding can be obtained in the shadow region where there is no direct line of sight between the source and observer. The boundary element solutions are restricted to low frequencies. We have used a simple physically-based model to extend the solution to higher frequencies. Based on this model, using a monopole acoustic source, we predict at least an 18 dBA reduction in the overall sound pressure level of forward-propagating fan noise because of shielding.
Resumo:
A novel transparent liquid-crystal-based microlens array has been fabricated using an array of vertically aligned multi-wall carbon nanofibers (MWCNFs) on a quartz substrate and its optical characteristics investigated. Electron beam lithography was used for the catalyst patterning on a quartz substrate to grow the MWCNF array of electrodes. The structure of the electrode array was determined through simulation to achieve the best optical performance. Both the patterned catalyst and growth parameters were optimized for optimal MWCNF properties. We report an in-depth optical characterization of these reconfigurable hybrid liquid crystal and nanofiber microlens arrays.