155 resultados para VACUUM MISALIGNMENT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical and electronic properties of highly tetrahedral amorphous diamond-like carbon (amorphous diamond, a-D) films were investigated. The structure of the films grown on silicon and glass substrates, under similar deposition conditions using a compact filtered cathodic vacuum arc system, are compared using electron energy loss spectroscopy (EELS). Results from hydrogenation of the films are also reported. The hydrogenated films show two prominent IR absorption peaks centered at 2920 and 2840 cm-1, which are assigned to the stretch mode of the C-H bond in the sp3 configuration on the C-H3 and C-H sites respectively. The high loss EELS spectra show no reduction in the high sp3 content in the hydrogenated films. UV and visible transmission spectra of a-D thin films are also presented. The optical band gap of 2.0-2.2 eV for the a-D films is found to be consistent with the electronic bandgap. The relationship between the intrinsic compressive stress in the films and the refractive index is also presented. The space charge limited current flow is analyzed and coupled with the optical absorption data to give an estimate of 1018 cm-3 eV-1 for the valence band edge density of states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-hydrogenated tetrahedral amorphous carbon (ta-C) has shown superior field emission characteristics. The understanding of the emission mechanism has been hindered by the lack of any directly measured data on the band offsets between ta-C and Si. In this paper results from direct in situ X-ray photoemission spectroscopy (XPS) measurements of the band-offset between ta-C and Si are reported. The measurements were carried out using a filtered cathodic vacuum arc (FCVA) deposition system attached directly to an ultra-high vacuum (UHV) XPS chamber via a load lock chamber. Repeated XPS measurements were carried out after monolayer depositions on in situ cleaned Si substrates. The total film thickness for each set of measurements was approximately 5 nm. Analysis of the data from undoped ta-C on n and p Si show the unexpected result that the conduction band barrier between Si and ta-C remains around 1.0 eV, but that the valence band barrier changes from 0.7 to 0.0 eV. The band line up derived from these barriers suggests that the Fermi level in the ta-C lies 0.3 eV above the valence band on both p and n+Si. The heterojunction barriers when ta-C is doped with nitrogen are also presented. The implications of the heterojunction energy barrier heights for field emission from ta-C are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of high current density nanofilament cathodes for microwave amplifiers was discussed. Metallic nanowires grown on silicon wafers and carbon nanotubes/nanofibers grown by catalytic plasma enhanced chemical vapor deposition (PECVD) were the two types of nanofilament arrays analyzed as cathodes materials. It was observed that the arrays of 5.8 μm height and 50 nm diameter carbon nanotubes exhibited geometrical enhancement factor of 240+-7.5%. The results show that carbon nanotubes/nanofibers arrays are best suited for nanofilament cathodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field emission behaviour of a series of Tetrahedrally Bonded Amorphous Carbon (ta-C) films has been measured. The films were produced using a Filtered Cathodic Vacuum Arc System. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have a threshold field of order 10-15 V/μm and optimally nitrogen-doped films exhibit fields as low as 5 V/μm. The emission as a function of back contact and front surface condition has also been considered and shows that the back contact has only a minor effect on emission efficiency. However, after etching in either an oxygen or hydrogen plasma, the films show a marked reduction in threshold field, down to as low as 2-3 V/μm, and a marked improvement in emission site density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrahedrally bonded amorphous carbon (ta-C) is a new type of semiconducting thin film material. It can be produced at room temperature using the Filtered Cathodic Vacuum Arc technique. The as-grown undoped ta-C is p-type in nature but it can be n-doped by the addition of nitrogen during deposition. This paper will describe thin film transistor design and fabrication using ta-C as the active channel layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper uses finite element (FE) analysis to examine the residual stresses generated during the TIG welding of aluminium aerospace alloys. It also looks at whether such an approach could be useful for evaluating the effectiveness of various residual stress control techniques. However, such simulations cannot be founded in a vacuum. They require accurate measurements to refine and validate them. The unique aspect of this work is that two powerful engineering techniques are combined: FE modelling and neutron diffraction. Weld trials were performed and the direct measurement of residual strain made using the ENGIN neutron diffraction strain scanning facility. The predicted results show an excellent agreement with experimental values. Finally this model is used to simulate a weld made using a "Low Stress No Distortion" (LSND) technique. Although the stress reduction predicted is only moderate, the study suggests the approach to be a quick and efficient means of optimising such techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field emission from a series of tetrahedrally bonded amorphous-carbon (ta-C) films, deposited in a filtered cathodic vacuum arc, has been measured. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have threshold fields of the order 10-15 V/μm and optimally nitrogen doped films exhibited fields as low as 5 V/μm. In order to gain further understanding of the mechanism of field emission, the films were also subjected to H2, Ar, and O2 plasma treatments and were also deposited onto substrates of different work function. The threshold field, emission current, emission site densities were all significantly improved by the plasma treatment, but little dependence of these properties on work function of the substrate was observed. This suggests that the main barrier to emission in these films is at the front surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen can have numerous effects on diamond-like carbon: it can dope, it can form the hypothetical superhard compound C3N4, or it can create fullerene-like bonding structures. We studied amorphous carbon nitrogen films deposited by a filtered cathodic vacuum arc as a function of nitrogen content, ion energy and deposition temperature. The incorporation of nitrogen from 10-2 to 10 at% was measured by secondary ion mass spectrometry and elastic recoil detection analysis and was found to vary slightly sublinearly with N2 partial pressure during deposition. In the doping regime from 0 to about 0.4% N, the conductivity changes while the sp3 content and optical gap remain constant. From 0.4 to approximately 10% N, existing sp2 sites condense into clusters and reduce the band gap. Nitrogen contents over 10% change the bonding from mainly sp3 to mainly sp2. Ion energies between 20 and 250 eV do not greatly modify this behaviour. Deposition at higher temperatures causes a sudden loss of sp3 bonding above about 150 °C. Raman spectroscopy and optical gap data show that existing sp2 sites begin to cluster below this temperature, and the clustering continues above this temperature. This transition is found to vary only weakly with nitrogen addition, for N contents below 10%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the fabrication and characterization of a carbon based, bottom gate, thin film transistor (TFT). The active layer is formed from highly sp2 bonded nitrogenated amorphous carbon (a-C:N) which is deposited at room temperature using a filtered cathodic vacuum arc technique. The TFT shows p-channel operation. The device exhibits a threshold voltage of 15 V and a field effect mobility of 10-4 cm2 V-1 s-1 . The valence band tail of a-C:N is observed to be much shallower than that of a-Si:H, but does not appear to severely impede the shift of the Fermi level. This may indicate that a significant proportion of the a-C tail states can still contribute to conduction.