104 resultados para Urban runoff


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has shown that hydraulic systems offer potentially the lightest and smallest regenerative braking technology for heavy goods vehicles. This paper takes the most practical embodiment of a hydraulic system for an articulated urban delivery vehicle and investigates the best specification for the various components, based on a simulated stop-start cycle. The potential energy saving is quantified. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop building stock models. This research proposes an engineering-based bottom-up stock model in a probabilistic manner to address these issues. School buildings are used for illustrating the application of this probabilistic method. Two sampling-based global sensitivity methods are used to identify key factors affecting building energy performance. The sensitivity analysis methods can also create statistical regression models for inverse analysis, which are used to estimate input information for building stock energy models. The effects of different energy saving measures are analysed by changing these building stock input distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural ventilation of a building, flanked by others forming urban canyons and driven by the combined forces of wind and thermal buoyancy, has been studied experimentally at small scale. The aim was to improve our understanding of the effect of the urban canyon geometry on passive building ventilation. The steady ventilation of an isolated building was observed to change dramatically, both in terms of the thermal stratification and airflow rate, when placed within the confines of urban canyons. The ventilation flows and internal stratifications observed at small scale are presented for a range of canyon widths (building densities) and wind speeds. Two typical opening arrangements are considered. Flanking an otherwise isolated building with others of similar geometry as in a typical urban canyon was shown to reverse the effect of wind on the thermally-driven ventilation. As a consequence, neglecting the surrounding geometry when designing naturally-ventilated buildings may result in poor ventilation. Further implications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urbanisation is one of the great driving forces of the twenty-first century. Cities generate both productivity and creativity, and the benefits offered by high-density living and working contribute to sustainability. Cities comprise multiple components, forming both static and dynamic systems that are interconnected directly and indirectly on a number of levels. Bringing together large numbers of people within a complex system can lead to vulnerability from a wide range of hazards, threats and trends. The key to reducing this vulnerability is the identification of critical systems and determination of the implications of their failure and their interconnectivities with other systems. One emerging approach to these challenges focuses on building resilience – defined here as the degree to which a system can continue to function effectively in a changing environment. This paper puts forward a framework designed to help engineers, planners and designers to support cities in understanding the hazards, threats and trends that can make them vulnerable, and identify focus areas for building resilience into the systems, which allow it to function and prosper. Four case studies of cities whose resilience was tested by recent extreme weather events are presented, seeking to demonstrate the application of the proposed framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global trend towards urbanization means that over half of the world's population now lives in cities. Cities use energy in different proportions to national energy use averages, typically corresponding to whether a country is industrialized or developing. Cities in industrialized countries tend to use less energy per capita than the national average while cities in developing countries use more. This paper looks at existing World Bank data in respect to urban energy consumption, the emissions inventory work done by New York City, and discusses how this data highlights the need for a focus on: energy policy for buildings in industrialized cities; masterplanning and new construction standards in developing cities; and how urban energy policy can become more effective in reducing urban greenhouse gas emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020-2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology for the analysis of building energy retrofits has been developed for a diverse set of buildings at the Royal Botanic Gardens (RBG), Kew in southwest London, UK. The methodology requires selection of appropriate building simulation tools dependent on the nature of the principal energy demand. This has involved the development of a stand-alone model to simulate the heat flow in botanical glasshouses, as well as stochastic simulation of electricity demand for buildings with high equipment density and occupancy-led operation. Application of the methodology to the buildings at RBG Kew illustrates the potential reduction in energy consumption at the building scale achievable from the application of retrofit measures deemed appropriate for heritage buildings and the potential benefit to be gained from onsite generation and supply of energy. © 2014 Elsevier Ltd.