118 resultados para Tuchengzi Formation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have for the first time developed a self-aligned metal catalyst formation process using fully CMOS (complementary metal-oxide-semiconductor) compatible materials and techniques, for the synthesis of aligned carbon nanotubes (CNTs). By employing an electrically conductive cobalt disilicide (CoSi 2) layer as the starting material, a reactive ion etch (RIE) treatment and a hydrogen reduction step are used to transform the CoSi 2 surface into cobalt (Co) nanoparticles that are active to catalyze aligned CNT growth. Ohmic contacts between the conductive substrate and the CNTs are obtained. The process developed in this study can be applied to form metal nanoparticles in regions that cannot be patterned using conventional catalyst deposition methods, for example at the bottom of deep holes or on vertical surfaces. This catalyst formation method is crucially important for the fabrication of vertical and horizontal interconnect devices based on CNTs. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of a perpendicular magnetic field on the single-particle charging spectrum of a graphene quantum dot embedded inline with a nanoribbon. We observe uniform shifts in the single-particle spectrum which coincide with peaks in the magnetoconductance, implicating Landau level condensation and edge state formation as the mechanism underlying magnetic field-enhanced transmission through graphene nanostructures. The experimentally determined ratio of bulk to edge states is supported by single-particle band-structure simulations, while a fourfold beating of the Coulomb blockade transmission amplitude points to many-body interaction effects during Landau level condensation of the ν=0 state. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of free electron-hole pairs and excitons in GaAs-AlGaAs-GaAs core-shell-skin nanowires is investigated using femtosecond transient photoluminescence spectroscopy at 10 K. Following nonresonant excitation, a bimolecular interconversion of the initially generated electron-hole plasma into an exciton population is observed. This conducting-to-insulating transition appears to occur gradually over electron-hole charge pair densities of 2-4 × 10(16) cm(-3) . The smoothness of the Mott transition is attributed to the slow carrier-cooling during the bimolecular interconversion of free charge carriers into excitons and to the presence of chemical-potential fluctuations leading to inhomogeneous spectral characteristics. These results demonstrate that high-quality nanowires are model systems for investigating fundamental scientific effects in 1D heterostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and morphological characteristics of InAs/GaAs radial nanowire heterostructures were investigated using transmission electron microscopy. It has been found that the radial growth of InAs was preferentially initiated on the { 112 } A sidewalls of GaAs nanowires. This preferential deposition leads to extraordinarily asymmetric InAs/GaAs radial nanowire heterostructures. Such formation of radial nanowire heterostructures provides an opportunity to engineer hierarchical nanostructures, which further widens the potential applications of semiconductor nanostructures. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To observe the axial growth behavior of InAs on GaAs nanowires, InAs was grown for different growth durations on GaAs nanowires using Au nanoparticles. Through transmission electron microscopy, we have observed the following evolution steps for the InAs growth. (1) In the initial stages of the InAs growth, InAs clusters into a wedge shape preferentially at an edge of the Au/GaAs interface by minimizing Au/InAs interfacial area; (2) with further growth of InAs, the Au particle moves sidewards and then downwards by preserving an interface with GaAs nanowire sidewalls. The lower interfacial energy of Au/GaAs than that of Au/In As is attributed to be the reason for such Au movement. This downward movement of the Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and with further supply of In and As vapor reactants, the Au nanoparticle assists the formation of InAs branches. These observations give some insights into vapor-liquid-solid growth and the formation of kinks in nanowire heterostructures. © 2008 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinks formation in heterostructural nanowires was observed to be dominant when InAs nanowires were grown on GaAs nanowires. Nanowires were grown through vapor-liquid-solid (VLS) mechanism in an MOCVD (metalorganic chemical vapor deposition) reactor. GaAs nanowires were grown in [1 1 1 ]B direction on a GaAs (1 1 1 )B substrate. When InAs nanowires grown on the GaAs nanowires, most of the InAs nanowires changed their growth directions from [1 1 1 ]B to other 〈111〉B directions. The kinks formation is ascribed to the large compressive misfit strain at the GaAs/InAs interface (7.2% lattice mismatch between GaAs and InAs) and the high mobility of indium species during MOCVD growth. The in-depth analysis of the kinks formation was done by growing InAs for short times on the GaAs nanowires and characterizing the samples. The hindrance to compressively strain InAs to form coherent layers with GaAs pushed the InAs/Au interfaces to the sides of the GaAs nanowires growth ends. New InAs/Au interfaces have generated at the sides of GaAs nanowires, due to lateral growth of InAs on GaAs nanowires. These new interfaces led the InAs nanowires growth in other 〈111〉B directions. The morphological and structural features of these heterostructural kinked nanowires were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. © 2006 IEEE.