111 resultados para Single InAs quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation of the mode-locking performance of a two-section external-cavity mode-locked InGaAs quantum-dot laser diode, focusing on repetition rate, pulse duration and pulse energy. The lowest repetition rate to-date of any passively mode-locked semiconductor laser diode is demonstrated (310 MHz) and a restriction on the pulse energy (at 0.4 pJ) for the shortest pulse durations is identified. Fundamental mode-locking from 310 MHz to 1.1 GHz was investigated, and harmonic mode-locking was achieved up to a repetition rate of 4.4 GHz. Fourier transform limited subpicosecond pulse generation was realized through implementation of an intra-cavity glass etalon, and pulse durations from 930fs to 8.3ps were demonstrated for a repetition rate of 1 GHz. For all investigations, mode-locking with the shortest pulse durations yielded constant pulse energies of ∼0.4 pJ, revealing an independence of the pulse energy on all the mode-locking parameters investigated (cavity configuration, driving conditions, pulse duration, repetition rate, and output power). © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tunneling through two vertically coupled quantum dots is studied by means of a Pauli master equation model. The observation of double peaks in the current-voltage characteristic in a recent experiment is analyzed in terms of the tunnel coupling between the quantum dots and the coupling to the contacts. Different regimes for the emitter chemical potential indicating different peak scenarios in the tunneling current are discussed in detail. We show by comparison with a density matrix approach that the interplay of coherent and incoherent effects in the stationary current can be fully described by this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a monolithically integrated mode-locked narrow stripe QD MOPA operating at 1300nm generating a stable 20GHz pulse train with an average power of 46.4mW and a pulse duration of 8.3ps. © Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superradiant emission pulses from a quantum-dot tapered device are generated on demand at repetition rates of up to 5 MHz. The pulses have durations as short as 320 fs at a wavelength of 1270 nm. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse generation from a mode-locked single-section 1.55μm quantum-dash FP laser is demonstrated under continuous-wave operation. A 270GHz, 580fs pulse train is achieved by applying frequency multiplication using fiber dispersion. ©2009 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic model of passive mode-locking in quantum-dot laser diodes is presented. It is found that in contrast with quantum-well lasers, rapid gain recovery is key for mode-locking of quantum-dot lasers. © 2008 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electro-absorption properties and Stark-shift of 1.3μm InGaAs quantum dot waveguide modulators are characterized under reverse bias. 2.5Gb/s data modulation is demonstrated for the first time with clear eye diagrams and error-free back-to-back performance. © 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-dot active material systems are proving to be an excellent choice for mode-locked laser applications. High-power, high repetition-rate picosecond and sub-picosecond pulse generation is now readily achievable with promising results for ultra-low jitter performance. © 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colliding pulse mode-locking is demonstrated for the first time in quantum-dot lasers. Close to transform limited, 7ps, 20GHz pulses are achieved using an absorber length considerably longer than typically used in similar quantum-well lasers. © 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effect of a perpendicular magnetic field on the single-particle charging spectrum of a graphene quantum dot embedded inline with a nanoribbon. We observe uniform shifts in the single-particle spectrum which coincide with peaks in the magnetoconductance, implicating Landau level condensation and edge state formation as the mechanism underlying magnetic field-enhanced transmission through graphene nanostructures. The experimentally determined ratio of bulk to edge states is supported by single-particle band-structure simulations, while a fourfold beating of the Coulomb blockade transmission amplitude points to many-body interaction effects during Landau level condensation of the ν=0 state. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the Fermi-Dirac statistics of electrons the temporal correlations of tunneling events in a double barrier setup are typically negative. Here, we investigate the shot noise behavior of a system of two capacitively coupled quantum dot states by means of a Master equation model. In an asymmetric setup positive correlations in the tunneling current can arise due to the bunching of tunneling events. The underlying mechanism will be discussed in detail in terms of the current-current correlation function and the frequency-dependent Fano factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaAs quantum dots (QDs) and nanowires have been grown on GaAs by metal-organic chemical vapour deposition on GaAs (100) and (111)B substrates, respectively. InGaAs QD lasers were fabricated and characterised. Results show ground-state lasing at about 1150 nm in devices with lengths greater than 2.5 mm. We also observed a strong influence of nanowire density on nanowire height specific to nanowires with high indium composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Selective area epitaxy for applications in quantum-dot optoelectronic device integration is also discussed in this paper. ©2006 IEEE.