110 resultados para Semi-Regular Operators
Resumo:
A semi-active truck damper was developed in conjunction with a commercial shock absorber manufacturer. A linearized damper model was developed for control system design purposes. Open- and closed-loop damper force tracking control was implemented, with tests showing that an open-loop approach gave the best compromise between response speed and accuracy. A hardware-in-the-loop test facility was used to investigate performance of the damper when combined with a simulated quarter-car model. The input to the vehicle model was a set of randomly generated road profiles, each profile traversed at an appropriate speed. Modified skyhook damping tests showed a simultaneous improvement over the optimum passive case of 13 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. Full-scale vehicle tests of the damper on a heavy tri-axle trailer were carried out. Implementation of modified skyhook damping yielded a simultaneous improvement over the optimum passive case of 8 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. © IMechE 2008.
Resumo:
The use of anti-roll bars to provide additional roll stiffness and therefore to reduce the trade-off between ride and rollover performance has previously been studied. However, little work has been carried out to investigate the benefits of a switchable roll stiffness. Such a semi-active anti-roll system has the ability to have a low roll stiffness during straight-ahead driving for improved ride performance and high roll stiffness during cornering for improved roll performance. Modelling of such a system is conducted and the model is validated against a semi-active anti-roll system fitted to an experimental vehicle. Experimental and theoretical investigations are used to investigate the performance of such a system with several different strategies employed to switch to the high-stiffness state. The use of an air suspension on the vehicle to roll into corners is also investigated, as is the possibility of exploiting the road layout by allowing the vehicle to be in a low-roll-stiffness configuration during a corner, and then to switch to the high-roll-stiffness configuration midcorner, hence 'locking in' a roll angle. The best rollover performance improvement that was achieved was 12.5 per cent. © IMechE 2008.
Resumo:
This paper develops a path-following steering control strategy for an articulated heavy goods vehicle. The controller steers the axles of the semi-trailer so that its rear end follows the path of the fifth wheel coupling: for all paths and all speeds. This substantially improves low-speed manoeuvrability, off-tracking, and tyre scrubbing (wear). It also increases high-speed stability, reduces 'rearward amplification', and reduces the propensity to roll over in high-speed transient manoeuvres. The design of a novel experimental heavy goods vehicle with three independent hydraulically actuated steering axles is presented. The path-following controller is tested on the experimental vehicle, at low and high speeds. The field test results are compared with vehicle simulations and found to agree well. The benefits of this steering control approach are quantified. In a low-speed 'roundabout' manoeuvre, low-speed off-tracking was reduced by 73 per cent, from 4.25 m for a conventional vehicle to 1.15 m for the experimental vehicle; swept-path width was reduced by 2 m (28 per cent); peak scrubbing tyre forces were reduced by 83 per cent; and entry tail-swing was eliminated. In an 80 km/h lane-change manoeuvre, peak path error for the experimental vehicle was 33 per cent less than for the conventional vehicle, and rearward amplification of the trailer was 35 per cent less. Increasing the bandwidth of the steering actuators improved the high-speed dynamic performance of the vehicle, but at the expense of increased oil flow.
Resumo:
We present a novel, implementation friendly and occlusion aware semi-supervised video segmentation algorithm using tree structured graphical models, which delivers pixel labels alongwith their uncertainty estimates. Our motivation to employ supervision is to tackle a task-specific segmentation problem where the semantic objects are pre-defined by the user. The video model we propose for this problem is based on a tree structured approximation of a patch based undirected mixture model, which includes a novel time-series and a soft label Random Forest classifier participating in a feedback mechanism. We demonstrate the efficacy of our model in cutting out foreground objects and multi-class segmentation problems in lengthy and complex road scene sequences. Our results have wide applicability, including harvesting labelled video data for training discriminative models, shape/pose/articulation learning and large scale statistical analysis to develop priors for video segmentation. © 2011 IEEE.
Resumo:
A combination of singular systems analysis and analytic phase techniques are used to investigate the possible occurrence in observations of coherent synchronization between quasi-biennial and semi-annual oscillations (QBOs; SAOs) in the stratosphere and troposphere. Time series of zonal mean zonal winds near the Equator are analysed from the ERA-40 and ERA-interim reanalysis datasets over a ∼ 50-year period. In the stratosphere, the QBO is found to synchronize with the SAO almost all the time, but with a frequency ratio that changes erratically between 4:1, 5:1 and 6:1. A similar variable synchronization is also evident in the tropical troposphere between semi-annual and quasi-biennial cycles (known as TBOs). Mean zonal winds from ERA-40 and ERA-interim, and also time series of indices for the Indian and West Pacific monsoons, are commonly found to exhibit synchronization, with SAO/TBO ratios that vary between 4:1 and 7:1. Coherent synchronization between the QBO and tropical TBO does not appear to persist for long intervals, however. This suggests that both the QBO and tropical TBOs may be separately synchronized to SAOs that are themselves enslaved to the seasonal cycle, or to the annual cycle itself. However, the QBO and TBOs are evidently only weakly coupled between themselves and are frequently found to lose mutual coherence when each changes its frequency ratio to its respective SAO. This suggests a need to revise a commonly cited paradigm that advocates the use of stratospheric QBO indices as a predictor for tropospheric phenomena such as monsoons and hurricanes. © 2012 Royal Meteorological Society.
Resumo:
Semi-implicit, second order temporal and spatial finite volume computations of the flow in a differentially heated rotating annulus are presented. For the regime considered, three cyclones and anticyclones separated by a relatively fast moving jet of fluid or "jet stream" are predicted. Two second order methods are compared with, first order spatial predictions, and experimental measurements. Velocity vector plots are used to illustrate the predicted flow structure. Computations made using second order central differences are shown to agree best with experimental measurements, and to be stable for integrations over long time periods (> 1000s). No periodic smoothing is required to prevent divergence.
Resumo:
An investigation into the potential for reducing road damage by optimising the design of heavy vehicle suspensions is described. In the first part of the paper two simple mathematical models are used to study the optimisation of conventional passive suspensions. Simple modifications are made to the steel spring suspension of a tandem axle trailer and it is found experimentally that RMS dynamic tyre forces can be reduced by 15% and theoretical road damage by 5.2%. A mathematical model of an air-sprung articulated vehicle is validated, and its suspension is optimised according to the simple models. This vehicle generates about 9% less damage than the leaf-sprung vehicle in the unmodified state and it is predicted that, for the operating conditions examined, the road damage caused by this vehicle can be reduced by a further 5.4%. Finally, it is shown experimentally that computer-controlled semi-active dampers have the potential to reduce road damage by a further 5-6%, compared to an air suspension with optimum passive damping. © Copyright 1994 Society of Automotive Engineers, Inc.
Resumo:
The ground movements induced by the construction of supported excavation systems are generally predicted by empirical/semi-empirical methods in the design stage. However, these methods cannot account for the site-specific conditions and for information that becomes available as an excavation proceeds. A Bayesian updating methodology is proposed to update the predictions of ground movements in the later stages of excavation based on recorded deformation measurements. As an application, the proposed framework is used to predict the three-dimensional deformation shapes at four incremental excavation stages of an actual supported excavation project. © 2011 Taylor & Francis Group, London.
Resumo:
The design and construction of deep excavations in urban environment is often governed by serviceability limit state related to the risk of damage to adjacent buildings. In current practice, the assessment of excavation-induced building damage has focused on a deterministic approach. This paper presents a component/system reliability analysis framework to assess the probability that specified threshold design criteria for multiple serviceability limit states are exceeded. A recently developed Bayesian probabilistic framework is used to update the predictions of ground movements in the later stages of excavation based on the recorded deformation measurements. An example is presented to show how the serviceability performance for excavation problems can be assessed based on the component/system reliability analysis. © 2011 ASCE.