122 resultados para Representational level
Resumo:
In this paper we present a wafer level three-dimensional simulation model of the Gate Commutated Thyristor (GCT) under inductive switching conditions. The simulations are validated by extensive experimental measurements. To the authors' knowledge such a complex simulation domain has not been used so far. This method allows the in depth study of large area devices such as GCTs, Gate Turn Off Thyristors (GTOs) and Phase Control Thyristors (PCTs). The model captures complex phenomena, such as current filamentation including subsequent failure, which allow us to predict the Maximum Controllable turn-off Current (MCC) and the Safe Operating Area (SOA) previously impossible using 2D distributed models. © 2012 IEEE.
Resumo:
The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. © 2012 Tan et al.
Resumo:
Optical interconnects are increasingly considered for use in high-performance electronic systems. Multimode polymer waveguides are a promising technology for the formation of optical backplane as they enable cost-effective integration of optical links onto standard printed circuit boards. In this paper, two different types of polymer waveguide-based optical backplanes are presented. The first one implements a passive shuffle architecture enabling non-blocking on-board optical interconnection between different cards/modules, while the second one deploys a regenerative bus architecture allowing the interconnection of an arbitrary number of electrical cards over a common optical bus. The polymer materials and the multimode waveguide components used to form the optical backplanes are presented, while details of the interconnection architectures and design of the backplanes are described. Proof-of-principle demonstrators fabricated onto low-cost FR4 substrates, including a 10-card 1 Tb/s-capacity passive shuffle router and 4-channel 3-card polymeric bus modules, are reported and their optical performance characteristics are presented. Low-loss, low-crosstalk on-board interconnection is achieved and error-free (BER10 12) 10 Gb/s communication between different card/module interfaces is demonstrated in both polymeric backplane systems. © 2012 IEEE.
Resumo:
We present a new online psycholinguistic resource for Greek based on analyses of written corpora combined with text processing technologies developed at the Institute for Language & Speech Processing (ILSP), Greece. The "ILSP PsychoLinguistic Resource" (IPLR) is a freely accessible service via a dedicated web page, at http://speech.ilsp.gr/iplr. IPLR provides analyses of user-submitted letter strings (words and nonwords) as well as frequency tables for important units and conditions such as syllables, bigrams, and neighbors, calculated over two word lists based on printed text corpora and their phonetic transcription. Online tools allow retrieval of words matching user-specified orthographic or phonetic patterns. All results and processing code (in the Python programming language) are freely available for noncommercial educational or research use. © 2010 Springer Science+Business Media B.V.
Resumo:
The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-level interconnections is presented. Low-loss and low-crosstalk module performance is achieved, while -1 dB alignment tolerances better than ± 8 μm are demonstrated. © 2012 OSA.
Resumo:
The concept of sustainable manufacturing is a form of pollution prevention that integrates environmental considerations in the production of goods while focusing on efficient resource use. Taking the industrial ecology perspective, this efficiency comes from improved resource flow management. The assessment of material, energy and waste resource flows, therefore, offers a route to viewing and analysing a manufacturing system as an ecosystem using industrial ecology biological analogy and can, in turn, support the identification of improvement opportunities in the material, energy and waste flows. This application of industrial ecology at factory level is absent from the literature. This article provides a prototype methodology to apply the concepts of industrial ecology using material, energy and waste process flows to address this gap in the literature. Various modelling techniques were reviewed and candidates selected to test the prototype methodology in an industrial case. The application of the prototype methodology showed the possibility of using the material, energy and waste resource flows through the factory to link manufacturing operations and supporting facilities, and to identify potential improvements in resource use. The outcomes of the work provide a basis to build the specifications for a modelling tool that can support those analysing their manufacturing system to improve their environmental performance and move towards sustainable manufacturing. © IMechE 2012.
Resumo:
Accurate and efficient computation of the distance function d for a given domain is important for many areas of numerical modeling. Partial differential (e.g. HamiltonJacobi type) equation based distance function algorithms have desirable computational efficiency and accuracy. In this study, as an alternative, a Poisson equation based level set (distance function) is considered and solved using the meshless boundary element method (BEM). The application of this for shape topology analysis, including the medial axis for domain decomposition, geometric de-featuring and other aspects of numerical modeling is assessed. © 2011 Elsevier Ltd. All rights reserved.