109 resultados para Real-Time


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-body sensor systems for sport are challenging since the sensors must be lightweight and small to avoid discomfort, and yet robust and highly accurate to withstand and capture the fast movements associated with sport. In this work, we detail our experience of building such an on-body system for track athletes. The paper describes the design, implementation and deployment of an on-body sensor system for sprint training sessions. We autonomously profile sprints to derive quantitative metrics to improve training sessions. Inexpensive Force Sensitive Resistors (FSRs) are used to capture foot events that are subsequently analysed and presented back to the coach. We show how to identify periods of sprinting from the FSR data and how to compute metrics such as ground contact time. We evaluate our system using force plates and show that millisecond-level accuracy is achievable when estimating contact times. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents results from conventional creep tests (CCT) and two accelerated test methods (the stepped isothermal method (SIM) and the stepped isostress method (SSM)) to determine the creep and creep-rupture behavior of two different aramid fibers, Kevlar 49 and Technora. CCT are regarded as the true behavior of the yarn, but they are impractical for long-term use where failures are expected only after many years. All the tests were carried out on the same batches of yarns, and using the same clamping arrangements, so the tests should be directly comparable. For both materials, SIM testing gives good agreement with CCT and gave stress-rupture lifetimes that followed the same trend. However, there was significant variation for SSM testing, especially when testing Technora fibers. The results indicate that Kevlar has a creep strain capacity that is almost independent of stress, whereas Technora shows a creep strain capacity that depends on stress. Its creep strain capacity is approximately two to three times that of Kevlar 49. The accelerated test methods give indirect estimates for the activation energy and the activation volume of the fibers. The activation energy for Technora is about 20% higher than that for Kevlar, meaning that it is less sensitive to the effects of increasing temperature. The activation volume for both materials was similar, and in both cases, stress dependent. Copyright © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First responders are in danger when they perform tasks in damaged buildings after earthquakes. Structural collapse due to the failure of critical load bearing structural members (e.g. columns) during a post-earthquake event such as an aftershock can make first responders victims, considering they are unable to assess the impact of the damage inflicted in load bearing members. The writers here propose a method that can provide first responders with a crude but quick estimate of the damage inflicted in load bearing members. Under the proposed method, critical structural members (reinforced concrete columns in this study) are identified from digital visual data and the damage superimposed on these structural members is detected with the help of Visual Pattern Recognition techniques. The correlation of the two (e.g. the position, orientation and size of a crack on the surface of a column) is used to query a case-based reasoning knowledge base, which contains apriori classified states of columns according to the damage inflicted on them. When query results indicate the column's damage state is severe, the method assumes that a structural collapse is likely and first responders are warned to evacuate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time cardiac ultrasound allows monitoring the heart motion during intracardiac beating heart procedures. Our application assists atrial septal defect (ASD) closure techniques using real-time 3D ultrasound guidance. One major image processing challenge is the processing of information at high frame rate. We present an optimized block flow technique, which combines the probability-based velocity computation for an entire block with template matching. We propose adapted similarity constraints both from frame to frame, to conserve energy, and globally, to minimize errors. We show tracking results on eight in-vivo 4D datasets acquired from porcine beating-heart procedures. Computing velocity at the block level with an optimized scheme, our technique tracks ASD motion at 41 frames/s. We analyze the errors of motion estimation and retrieve the cardiac cycle in ungated images. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an adaptive Sequential Monte Carlo approach for real-time applications. Sequential Monte Carlo method is employed to estimate the states of dynamic systems using weighted particles. The proposed approach reduces the run-time computation complexity by adapting the size of the particle set. Multiple processing elements on FPGAs are dynamically allocated for improved energy efficiency without violating real-time constraints. A robot localisation application is developed based on the proposed approach. Compared to a non-adaptive implementation, the dynamic energy consumption is reduced by up to 70% without affecting the quality of solutions. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitous in-building Real Time Location Systems (RTLS) today are limited by costly active radio frequency identification (RFID) tags and short range portal readers of low cost passive RFID tags. We, however, present a novel technology locates RFID tags using a new approach based on (a) minimising RFID fading using antenna diversity, frequency dithering, phase dithering and narrow beam-width antennas, (b) measuring a combination of RSSI and phase shift in the coherent received tag backscatter signals and (c) being selective of use of information from the system by, applying weighting techniques to minimise error. These techniques make it possible to locate tags to an accuracy of less than one metre. This breakthrough will enable, for the first time, the low-cost tagging of items and the possibility of locating them at relatively high precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical motion capture systems suffer from marker occlusions resulting in loss of useful information. This paper addresses the problem of real-time joint localisation of legged skeletons in the presence of such missing data. The data is assumed to be labelled 3d marker positions from a motion capture system. An integrated framework is presented which predicts the occluded marker positions using a Variable Turn Model within an Unscented Kalman filter. Inferred information from neighbouring markers is used as observation states; these constraints are efficient, simple, and real-time implementable. This work also takes advantage of the common case that missing markers are still visible to a single camera, by combining predictions with under-determined positions, resulting in more accurate predictions. An Inverse Kinematics technique is then applied ensuring that the bone lengths remain constant over time; the system can thereby maintain a continuous data-flow. The marker and Centre of Rotation (CoR) positions can be calculated with high accuracy even in cases where markers are occluded for a long period of time. Our methodology is tested against some of the most popular methods for marker prediction and the results confirm that our approach outperforms these methods in estimating both marker and CoR positions. © 2012 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a heterogeneous reconfigurable system for real-time applications applying particle filters. The system consists of an FPGA and a multi-threaded CPU. We propose a method to adapt the number of particles dynamically and utilise the run-time reconfigurability of the FPGA for reduced power and energy consumption. An application is developed which involves simultaneous mobile robot localisation and people tracking. It shows that the proposed adaptive particle filter can reduce up to 99% of computation time. Using run-time reconfiguration, we achieve 34% reduction in idle power and save 26-34% of system energy. Our proposed system is up to 7.39 times faster and 3.65 times more energy efficient than the Intel Xeon X5650 CPU with 12 threads, and 1.3 times faster and 2.13 times more energy efficient than an NVIDIA Tesla C2070 GPU. © 2013 Springer-Verlag.