102 resultados para RING-DISK ELECTRODE
Radio over free space optical link using a directly modulated two-electrode high power tapered laser
Resumo:
The analog modulation performance of a high-power two-electrode tapered laser is investigated. A 25dB dynamic range for 2.4GHz 802.11g signals is achieved with a 26dB loss budget, showing a >1km free space range is possible. © 2010 Optical Society of America.
Gigabit/s modulation of twin-electrode high-brightness tapered laser with high modulation efficiency
Resumo:
Simultaneous high modulation speed and high modulation efficiency operation of a two-electrode tapered laser is reported. 1Gb/s direct data modulation is achieved with 68mA applied current swing for a 0.95W output optical modulation amplitude. © 2009 Optical Society of America.
Resumo:
Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. For reliable predictions of the material flow and the microstructure evolution it's necessary to include a real ring rolling mill's control algorithm into the model. Furthermore an approach for the online measurement of the profile evolution during the process is presented by means of axial profiling in ring rolling. Hence the definition of new ring rolling strategies is possible even for advanced geometries.
Resumo:
We demonstrate the tunability of a silicon nitride micro-resonator using the concept of Digital Microfluidics. Our system allows driving micro-droplets on-chip, enabling the control of the effective refractive index at the vicinity of the resonator. © 2010 OSA/FiO/LS 2010.
Resumo:
Electronic systems are a very good platform for sensing biological signals for fast point-of-care diagnostics or threat detection. One of the solutions is the lab-on-a-chip integrated circuit (IC), which is low cost and high reliability, offering the possibility for label-free detection. In recent years, similar integrated biosensors based on the conventional complementary metal oxide semiconductor (CMOS) technology have been reported. However, post-fabrication processes are essential for all classes of CMOS biochips, requiring biocompatible electrode deposition and circuit encapsulation. In this work, we present an amorphous silicon (a-Si) thin film transistor (TFT) array based sensing approach, which greatly simplifies the fabrication procedures and even decreases the cost of the biosensor. The device contains several identical sensor pixels with amplifiers to boost the sensitivity. Ring oscillator and logic circuits are also integrated to achieve different measurement methodologies, including electro-analytical methods such as amperometric and cyclic voltammetric modes. The system also supports different operational modes. For example, depending on the required detection arrangement, a sample droplet could be placed on the sensing pads or the device could be immersed into the sample solution for real time in-situ measurement. The entire system is designed and fabricated using a low temperature TFT process that is compatible to plastic substrates. No additional processing is required prior to biological measurement. A Cr/Au double layer is used for the biological-electronic interface. The success of the TFT-based system used in this work will open new avenues for flexible label-free or low-cost disposable biosensors. © 2013 Materials Research Society.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2007 Optical Society of America.
Resumo:
In the design of capacitive touch-screen panels, electrodes are patterned to improve touch sensitivity. In this paper, we analyze the relationship between electrode patterns and touch sensitivity. An approach is presented where simulations are used to measure the sensitivity of touch-screen panels based on capacitance changes for various electrode patterns. Touch sensitivity increases when the touch object is positioned in close proximity to fringing electric fields generated by the patterned electrodes. Three new electrode patterns are proposed to maximize field fringing in order to increase touch sensitivity by purely electrode patterning means. Simulations showed an increased touch sensitivity of up to 5.4%, as compared with the more conventional interlocking diamonds pattern. Here, we also report empirical findings for fabricated touch-screen panels. © 2005-2012 IEEE.
Resumo:
© 2014 Cambridge University Press. This paper describes a detailed experimental study using hot-wire anemometry of the laminar-turbulent transition region of a rotating-disk boundary-layer flow without any imposed excitation of the boundary layer. The measured data are separated into stationary and unsteady disturbance fields in order to elaborate on the roles that the stationary and the travelling modes have in the transition process. We show the onset of nonlinearity consistently at Reynolds numbers, R, of ∼ 510, i.e. at the onset of Lingwood's (J. Fluid Mech., vol. 299, 1995, pp. 17-33) local absolute instability, and the growth of stationary vortices saturates at a Reynolds number of ∼ 550. The nonlinear saturation and subsequent turbulent breakdown of individual stationary vortices independently of their amplitudes, which vary azimuthally, seem to be determined by well-defined Reynolds numbers. We identify unstable travelling disturbances in our power spectra, which continue to grow, saturating at around R=585, whereupon turbulent breakdown of the boundary layer ensues. The nonlinear saturation amplitude of the total disturbance field is approximately constant for all considered cases, i.e. different rotation rates and edge Reynolds numbers. We also identify a travelling secondary instability. Our results suggest that it is the travelling disturbances that are fundamentally important to the transition to turbulence for a clean disk, rather than the stationary vortices. Here, the results appear to show a primary nonlinear steep-fronted (travelling) global mode at the boundary between the local convectively and absolutely unstable regions, which develops nonlinearly interacting with the stationary vortices and which saturates and is unstable to a secondary instability. This leads to a rapid transition to turbulence outward of the primary front from approximately R=565 to 590 and to a fully turbulent boundary layer above 650.
Resumo:
© 2014 Elsevier Masson SAS. All rights reserved. The turbulent boundary layer on a rotating disk is studied with the aim of giving a statistical description of the azimuthal velocity field and to compare it with the streamwise velocity of a turbulent two-dimensional flat-plate boundary layer. Determining the friction velocity accurately is particularly challenging and here this is done through direct measurement of the velocity distribution close to the rotating disk in the very thin viscous sublayer using hot-wire anemometry. Compared with other flow cases, the rotating-disk flow has the advantage that the highest relative velocity with respect to a stationary hot wire is at the wall itself, thereby limiting the effect of heat conduction to the wall from the hot-wire probe. Experimental results of mean, rms, skewness and flatness as well as spectral information are provided. Comparison with the two-dimensional boundary layer shows that turbulence statistics are similar in the inner region, although the rms-level is lower and the maximum spectral content is found at smaller wavelengths for the rotating case. These features both indicate that the outer flow structures are less influential in the inner region for the rotating case.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2008 Optical Society of America.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light represents a fundamental step for many different applications. Split-ring resonators, subwavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, with a maximum modulation depth of 18%. © 2014 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light, represents a fundamental step for many different applications. Split-ring resonators, sub-wavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 THz and 3.1 THz, with a maximum modulation depth of 18%.