127 resultados para Piezoelectric charge constant
Guided propagation of surface acoustic waves and piezoelectric field enhancement in ZnO/GaAs systems
Resumo:
The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.
Resumo:
Integration of a piezoelectric high frequency ultrasound (HFUS) array with a microfabricated application specific integrated circuit (ASIC) performing a range of functions has several advantages for ultrasound imaging. The number of signal cables between the array/electronics and the data acquisition / imaging system can be reduced, cutting costs and increasing functionality. Electrical impedance matching is also simplified and the same approach can reduce overall system dimensions for applications such as endoscopic ultrasound. The work reported in this paper demonstrates early ASIC operation with a piezocomposite HFUS array operating at approximately 30 MHz. The array was tested in three different modes. Clear signals were seen in catch-mode, with an external transducer as a source of ultrasound, and in pitch-mode with the external transducer as a receiver. Pitch-catch mode was also tested successfully, using sequential excitation on three array elements, and viable signals were detected. However, these were relatively small and affected by interference from mixed-signal sources in the ASIC. Nevertheless, the functionality and compatibility of the two main components of an integrated HFUS - ASIC device have been demonstrated and the means of further optimization are evident.
Resumo:
The design and manufacture of a prototype chip level power supply is described, with both simulated and experimental results. Of particular interest is the inclusion of a fully integrated on-chip LC filter. A high switching frequency of 660MHz and the design of a device drive circuit reduce losses by supply stacking, low-swing signaling and charge recycling. The paper demonstrates that a chip level converter operating at high frequency can be built and shows how this can be achieved, using zero voltage switching techniques similar to those commonly used in larger converters. Both simulations and experimental data from a fabricated circuit in 0.18μm CMOS are included. The circuit converts 2.2V to 0.75∼1.0V at ∼55mA. ©2008 IEEE.
Resumo:
An analytical model for the electric field and the breakdown voltage (BV) of an unbalanced superjunction (SJ) device is presented in this paper. The analytical technique uses a superposition approach treating the asymmetric charge in the pillars as an excess charge component superimposed on a balanced charge component. The proposed double-exponentialmodel is able to accurately predict the electric field and the BV for unbalanced SJ devices in both punch through and non punch through conditions. The model is also reasonably accurate at extremely high levels of charge imbalance when the devices behave similarly to a PiN diode or to a high-conductance layer. The analytical model is compared against numerical simulations of charge unbalanced SJ devices and against experimental results. © 2009 IEEE.
Resumo:
A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
The measurement of cantilever parameters is an essential part of performing a calibrated measurement with an atomic force microscope (AFM). The thermal motion method is a widely used technique for calibrating the spring constant of an AFM cantilever, which can be applied to non-rectangular cantilevers. Given the trend towards high frequency scanning, calibration of non-rectangular cantilevers is of increasing importance. This paper presents two results relevant to cantilever calibration via the thermal motion method. We demonstrate the possibility of using the AFM's phase signal to acquire the thermal motion. This avoids the challenges associated with connecting the raw photodiode signal to a separate spectrum analyser. We also describe how numerical calculations may be used to calculate the parameters needed in a thermal motion calibration of a non-rectangular cantilever. Only accurate knowledge of the relative size of the in-plane dimensions of the cantilever is needed in this computation. We use this pair of results in the calibration of a variety of rectangular and non-rectangular cantilevers. We observe an average difference between the Sader and thermal motion values of cantilever stiffness of 10%.
Resumo:
A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.
Resumo:
Electron multiplication charge-coupled devices (EMCCD) are widely used for photon counting experiments and measurements of low intensity light sources, and are extensively employed in biological fluorescence imaging applications. These devices have a complex statistical behaviour that is often not fully considered in the analysis of EMCCD data. Robust and optimal analysis of EMCCD images requires an understanding of their noise properties, in particular to exploit fully the advantages of Bayesian and maximum-likelihood analysis techniques, whose value is increasingly recognised in biological imaging for obtaining robust quantitative measurements from challenging data. To improve our own EMCCD analysis and as an effort to aid that of the wider bioimaging community, we present, explain and discuss a detailed physical model for EMCCD noise properties, giving a likelihood function for image counts in each pixel for a given incident intensity, and we explain how to measure the parameters for this model from various calibration images. © 2013 Hirsch et al.