139 resultados para Passive recovery
Resumo:
We demonstrate the use of resonant bandfilling nonlinearity in an InGaAsP/InGaAsP Multiple Quantum Well (MQW) waveguide due to photogenerated carriers to obtain switching at pulse powers, which can readily be obtained from an erbium amplified diode laser source. In order to produce gating a polarisation rotation gate was used, which relies on an asymmetry in the nonlinear refraction on the principle axes of the waveguide.
Resumo:
This work demonstrates transmission at 2.5 Gbit/s across two wavelength-division multiplexing (WDM) network nodes, constructed using counter-propagating semiconductor optical amplifier (SOA) wavelength converters and an integrated wavelength-selective router separated by 45 km of fiber, with an overall penalty of 0.6 dB. Minimal degradation of the eye diagram is evident across the whole system. Full utilization of the capacity of the router would allow an aggregate 360-Gbit/s node capacity for a WDM channel of 2.5 Gb/s.
Resumo:
All-optical routing of 2.5Gbit/s WDM signals across two cascaded Optical Cross Connects(OXCs) with a penalty of only 0.6dB has been demonstrated using tuneable wavelength converters and a passive WDM router.
Resumo:
All-optical routing of 2.5Gbit/s WDM signals across two cascaded Optical Cross Connects(OXCs) with a penalty of only 0.6dB has been demonstrated using tuneable wavelength converters and a passive WDM router.
Resumo:
In this paper an Active Voltage Control (AVC) technique is presented, for series connection of insulated-gate-bipolar-transistors (IGBT) and control of diode recovery. The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. Another key advantage for AVC is that by changing the reference signal at turn-on, the diode recovery can be optimised. © 2010 IEEE.
Resumo:
This paper develops an algorithm for finding sparse signals from limited observations of a linear system. We assume an adaptive Gaussian model for sparse signals. This model results in a least square problem with an iteratively reweighted L2 penalty that approximates the L0-norm. We propose a fast algorithm to solve the problem within a continuation framework. In our examples, we show that the correct sparsity map and sparsity level are gradually learnt during the iterations even when the number of observations is reduced, or when observation noise is present. In addition, with the help of sophisticated interscale signal models, the algorithm is able to recover signals to a better accuracy and with reduced number of observations than typical L1-norm and reweighted L1 norm methods. ©2010 IEEE.
Resumo:
Product recovery is beset by uncertainty regarding the quality of end-of-life (EOL) products, and in order to ascertain the reusability of these products, they have to undergo expensive tests. This undermines the profitability of the recovery process. The key to improve the effectiveness of product recovery is to improve the quality of information available before testing. Emerging data capture technologies can significantly improve the availability of information. However, in order to maximise the potential of these technologies, appropriate decision-making algorithms that exploit such information must be developed. We model the recovery process using a decision-theoretic approach, and derive strategies to ascertain the reusability of EOL products, and also to decide when tests are beneficial. We show that improving the quality of information leads to increase in effectiveness of the recovery process by reducing the need for tests. Copyright © 2009 Inderscience Enterprises Ltd.
Resumo:
Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.
Resumo:
This paper describes the conceptual ideas, the theoretical validation, the laboratory testing and the field trials of a recently patented fuel-air mixing device for use in high-pressure ratio, low emissions, gaseous-fueled gas turbines. By making the fuel-air mixing process insensitive to pressure fluctuations in the combustion chamber, it is possible to avoid the common problem of positive feedback between mixture strength and the unsteady combustion process. More specifically, a mixing duct has been designed such that fuel-air ratio fluctuations over a wide range of frequencies can be damped out by passive design means. By scaling the design in such a way that the range of damped frequencies covers the frequency spectrum of the acoustic modes in the combustor, the instability mechanism can be removed. After systematic development, this design philosophy was successfully applied to a 35:1 pressure ratio aeroderivative gas turbine yielding very low noise levels and very competitive NOx and CO measurements. The development of the new premixer is described from conceptual origins through analytic and CFD evaluation to laboratory testing and final field trials. Also included in this paper are comments about the practical issues of mixing, flashback resistance and autoignition.
Resumo:
The first monolithically integrated 44 switch with power monitoring function using on-chip PIN photodiodes is reported. Using 10Gb/s signals, under active power control an IPDR of 12dB for a 1dB power penalty is achieved. © 2012 OSA.