143 resultados para NANOTECHNOLOGY (100700)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of multi-walled carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. In particular, we examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanotube (CNT) emitters were formed on line-patterned cathodes in microtrenches through a thermal CVD process. Single-walled carbon nanotubes (SWCNTs) self-organized along the trench lines with a submicron inter-CNT spacing. Excellent field emission (FE) properties were obtained: current densities at the anode (J(a)) of 1 microA cm(-2), 10 mA cm(-2) and 100 mA cm(-2) were recorded at gate voltages (V(g)) of 16, 25 and 36 V, respectively. The required voltage difference to gain a 1:10 000 contrast of the anode current was as low as 9 V, indicating that a very low operating voltage is possible for these devices. Not only a large number of emission sites but also the optimal combination of trench structure and emitter morphology are crucial to achieve the full FE potential of thin CNTs with a practical lifetime. The FE properties of 1D arrays of CNT emitters and their optimal design are discussed. Self-organization of thin CNTs is an attractive prospect to tailor preferable emitter designs in FE devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an in-depth study of the myriad atomically resolved patterns observed on graphite using the scanning tunnelling microscope (STM) over the past three decades. Through the use of highly resolved atomic resolution images, we demonstrate how the interactions between the different graphene layers comprising graphite affect the local surface atomic charge density and its resulting symmetry orientation, with particular emphasis on interactions that are thermodynamically unstable. Moreover, the interlayer graphene coupling is controlled experimentally by varying the tip-surface interaction, leading to associated changes in the atomic patterns. The images are corroborated by first-principles calculations, further validating our claim that surface graphene displacement, coming both from lateral and vertical displacement of the top graphene layer, forms the basis of the rich variety of atomic patterns observed in STM experiments on graphite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNTinorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O 3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Lowloss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Currentvoltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectriccarbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. © 2012 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that surface stresses in epitaxially grown VO₂ nanowires (NWs) have a strong effect on the appearance and stability of intermediate insulating M₂ phases, as well as the spatial distribution of insulating and metallic domains during structural phase transitions. During the transition from an insulating M1 phase to a metallic R phase, the coexistence of insulating M₁ and M₂ phases with the absence of a metallic R phase was observed at atmospheric pressure. In addition, we show that, for a VO₂ NW without the presence of an epitaxial interface, surface stresses dominantly lead to spatially inhomogeneous phase transitions between insulating and metallic phases. In contrast, for a VO₂ NW with the presence of an epitaxial interface, the strong epitaxial interface interaction leads to additional stresses resulting in uniformly alternating insulating and metallic domains along the NW length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an all-laser processing approach allowing controlled growth of organic-inorganic superlattice structures of rare-earth ion doped tellurium-oxide-based glass and optically transparent polydimethyl siloxane (PDMS) polymer; the purpose of which is to illustrate the structural and thermal compatibility of chemically dissimilar materials at the nanometer scale. Superlattice films with interlayer thicknesses as low as 2 nm were grown using pulsed laser deposition (PLD) at low temperatures (100 °C). Planar waveguides were successfully patterned by femtosecond-laser micro-machining for light propagation and efficient Er(3+)-ion amplified spontaneous emission (ASE). The proposed approach to achieve polymer-glass integration will allow the fabrication of efficient and durable polymer optical amplifiers and lossless photonic devices. The all-laser processing approach, discussed further in this paper, permits the growth of films of a multitude of chemically complex and dissimilar materials for a range of optical, thermal, mechanical and biological functions, which otherwise are impossible to integrate via conventional materials processing techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a result of their morphology, nanowires bring new properties and the promise of performance for a range of electronic devices. This review looks into the properties of nanowires and the multiple ways in which they have been exploited for energy generation, from photovoltaics to piezoelectric generators. © 2012 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the photoresponse characteristics of tungsten disulfide (WS2) nanotubes. Field effect transistors (FETs) were fabricated by using individual WS2 multiwall nanotubes. Photo-sensitivity to visible light is clearly observed, with enhancement of the channel conductivity, carrier mobility and carrier concentration upon illumination in the visible regime. Polarization-sensitive measurements reveal a strong anisotropy of the photocurrent on the polarization angle of the incident light with respect to the WS2 nanotube axis. This nano-scale transistor capable of detecting visible light would have a wide range of applications in medical and consumer electronics. © 2008 IEEE. Crown Copyright.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the growth of multi wall and single wall carbon nanotubes (CNT) onto substrates containing commercial 1-m CMOS integrated circuits. The low substrate temperature growth (450°C) was achieved by using hot filament (1000 °C) to preheat the source gases (C 2H 2 and NH 3) and in situ mass spe-ctroscopy was used to identify the gas species present. Field effect transistors based on Single Walled Carbon Nanotube (SWNT) grown under such conditions were fabricated and examined. CNT growth was performed directly on the passivation layer of the CMOS integrated circuits. Individual n- and p-type CMOS transistors were compared before and after CNT growth. The transistors survive and operate after the CNT growth process, although small degradations are observed in the output current (for p-transistors) and leakage current (for both p- and n-type transistors). © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic study of the Cu-catalyzed chemical vapor deposition of graphene under extremely low partial pressure is carried out. A carbon precursor supply of just P CH4∼ 0.009 mbar during the deposition favors the formation of large-area uniform monolayer graphene verified by Raman spectra. A diluted HNO 3 solution is used to remove Cu before transferring graphene onto SiO 2/Si substrates or carbon grids. The graphene can be made suspended over a ∼12 μm distance, indicating its good mechanical properties. Electron transport measurements show the graphene sheet resistance of ∼0.6 kΩ/□ at zero gate voltage. The mobilities of electrons and holes are ∼1800 cm 2/Vs at 4.2 K and ∼1200 cm 2/Vs at room temperature. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.