98 resultados para Line Sweep
Resumo:
Narrowband Power-line Communication (NPLC) technology uses a narrow bandwidth to transmit information. Its major applications include control, smart home systems and security. This paper proposes a power optimised NPLC system to minimise its systemic power consumption without compromising its communication ability. By using the proposed Smart Energy Conservation Layer which reads the signal strength from the PLC channel, a power optimised system is achieved to provide the essential transmitting power to secure the communications. Compared to commercial systems, the potential power saving could be up to 99% in a household environment, as demonstrated by the experimental results. © 2013 IEEE.
Resumo:
Designing technology products that embrace the needs and capabilities of heterogeneous users leads not only to increased customer satisfaction and enhanced corporate social responsibility, but also better market penetration. Yet, achieving inclusion in today's pressured and fast-moving markets is not straight-forward. For a time, inaccessible and unusable design was solely seen as the fault of designers and a whole line of research was dedicated to pinpointing their frailties. More recently, it has become progressively more recognised that it is not necessarily designers' lack of awareness, or unwillingness, that results in sub-optimal design, but rather there are multi-faceted organisational factors at play that seldom provide an adequate environment in which inclusive products could be designed. Through literature review, a detailed audit of inclusivity practice in a large global company and ongoing research regarding quantification of cost-effectiveness of inclusive design, this paper discusses the overarching operational problems that prevent organisations from developing optimally inclusive products and offers best-practice principles for the future. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
High power bandwidth-limited picosecond pulses with peak powers in excess of 200 mW have been generated using multi-contact distributed feedback laser diodes for the first time. The pulses have widths typically less than 10 ps, time-bandwidth products of as little as 0·24, and can be generated on demand at generator limited repetition rates of up to 140 MHz.
Resumo:
An easy-to-interpret kinematic quantity measuring the average corotation of material line segments near a point is introduced and applied to vortex identification. At a given point, the vector of average corotation of line segments is defined as the average of the instantaneous local rigid-body rotation over "all planar cross sections" passing through the examined point. The vortex-identification method based on average corotation is a one-parameter, region-type local method sensitive to the axial stretching rate as well as to the inner configuration of the velocity gradient tensor. The method is derived from a well-defined interpretation of the local flow kinematics to determine the "plane of swirling" and is also applicable to compressible and variable-density flows. Practical application to direct numerical simulation datasets includes a hairpin vortex of boundary-layer transition, the reconnection process of two Burgers vortices, a flow around an inclined flat plate, and a flow around a revolving insect wing. The results agree well with some popular local methods and perform better in regions of strong shearing. Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.
Resumo:
BACKGROUND: Routine assessment of dry weight in chronic hemodialysis patients relies primarily on clinical evaluation of patient fluid status. We evaluated whether measurement of postdialytic vascular refill could assist in the assessment of dry weight. METHODS: Twenty-eight chronic, stable hemodialysis patients were studied during routine treatment sessions using constant dialysate temperature and dialysate sodium concentration, and relative changes in blood volume were monitored using Crit-Line III monitors throughout this study. The study was divided into three phases. Phase 1 studies evaluated the time-dependence of vascular compartment refill after completion of hemodialysis. Phase 2 studies evaluated the relationships in patient subgroups between intradialytic changes in blood volume and the presence of postdialytic vascular compartment refill during that last 10 minutes of hemodialysis after stopping ultrafiltration. Phase 3 studies evaluated the extent of dry weight changes following the application of a protocol for blood volume reduction, postdialytic vascular compartment refill, and correlation with clinical evidence of intradialytic hypovolemia and/or postdialytic fatigue. Phase 3 included anywhere from three to five treatments. RESULTS: Phase 1 studies demonstrated that despite interpatient variability in the magnitude of postdialytic vascular compartment refill, when significant refill was evident, it always continued for at least 30 minutes. However, the majority of refill took place within 10 minutes postdialysis. Phase 2 studies identified 3 groups of patients: those who exhibited intradialytic reductions in blood volume but not postdialytic vascular compartment refill (group 1), those who exhibited intradialytic reductions in blood volume and postdialytic vascular compartment refill (group 2), and those whose blood volume did not change substantially during hemodialysis treatment (group 3). In phase 3 studies, use of an ultrafiltration protocol for blood volume reduction and monitoring of postdialytic vascular compartment refill combined with clinical assessment of hypovolemia and postdialytic fatigue demonstrated that patients often had a clinical dry weight assessment which was too low or too high. In all 28 patients studied, dry weight was either increased or decreased following use of this protocol. CONCLUSION: Determination of the extent of both intradialytic decreases in blood volume and postdialytic vascular compartment refill, combined with clinical assessment of intradialytic hypovolemia and postdialytic fatigue, can help assess patient dry weight and optimize volume status while reducing dialysis associated morbidity. The number of hospital admissions due to fluid overload may be reduced.
Resumo:
A monolithic design is proposed for low-noise sub-THz signal generation by integrating a reflector onto a dual laser source. The reflectivity and the position of such a reflector can be adjusted to obtain constructive feedback from the reflector to both lasers, thus causing a Vernier feedback effect. As a result, 10-fold line narrowing, the narrowing being limited by the resolution of the simulation, is predicted using a transmission line model. Finally, a simple control scheme using an electrical feedback loop to adjust laser biases is proposed to maintain the line narrowing performance. This line narrowing technique, comprising a passive integrated reflector, could allow the development of a low-cost, compact and energy-efficient solution for high-purity sub-THz signal generation. © The Institution of Engineering and Technology 2014.