118 resultados para Labor cost
Resumo:
This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to see. All of the parts but one are off the shelf, and assembly time is generally less than two days, which makes the microscope a robust instrument that is readily handled by the students with little chance of damage. While the scanning resolution is nowhere near that of a commercial instrument, it is more than sufficient to take interesting scans of micrometer-scale objects. A survey of students after their having used the AFM resulted in a generally good response, with 80% agreeing that they had a positive learning experience. © 2009 IEEE.
Resumo:
Rogowski transducers have become an increasingly popular method of measuring current within prototyping applications and power electronics equipment due to their significant advantages compared to an equivalent current transformer. This paper presents a simple and practical construction technique of high-performance, low-cost Rogowski transducers and accompanying circuitry. Experimental tests were carried out to show the validity of the proposed construction technique. © 2005 IEEE.
Resumo:
Board-level optical links are an attractive alternative to their electrical counterparts as they provide higher bandwidth and lower power consumption at high data rates. However, on-board optical technology has to be cost-effective to be commercially deployed. This study presents a chip-to-chip optical interconnect formed on an optoelectronic printed circuit board that uses a simple optical coupling scheme, cost-effective materials and is compatible with well-established manufacturing processes common to the electronics industry. Details of the link architecture, modelling studies of the link's frequency response, characterisation of optical coupling efficiencies and dynamic performance studies of this proof-of-concept chip-to-chip optical interconnect are reported. The fully assembled link exhibits a -3 dBe bandwidth of 9 GHz and -3 dBo tolerances to transverse component misalignments of ±25 and ±37 μm at the input and output waveguide interfaces, respectively. The link has a total insertion loss of 6 dBo and achieves error-free transmission at a 10 Gb/s data rate with a power margin of 11.6 dBo for a bit-error-rate of 10 -12. The proposed architecture demonstrates an integration approach for high-speed board-level chip-to-chip optical links that emphasises component simplicity and manufacturability crucial to the migration of such technology into real-world commercial systems. © 2012 The Institution of Engineering and Technology.
Resumo:
Most of the manual labor needed to create the geometric building information model (BIM) of an existing facility is spent converting raw point cloud data (PCD) to a BIM description. Automating this process would drastically reduce the modeling cost. Surface extraction from PCD is a fundamental step in this process. Compact modeling of redundant points in PCD as a set of planes leads to smaller file size and fast interactive visualization on cheap hardware. Traditional approaches for smooth surface reconstruction do not explicitly model the sparse scene structure or significantly exploit the redundancy. This paper proposes a method based on sparsity-inducing optimization to address the planar surface extraction problem. Through sparse optimization, points in PCD are segmented according to their embedded linear subspaces. Within each segmented part, plane models can be estimated. Experimental results on a typical noisy PCD demonstrate the effectiveness of the algorithm.
Resumo:
Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.
Resumo:
A novel integration method for the production of cost-effective optoelectronic printed circuit boards (OE PCBs) is presented. The proposed integration method allows fabrication of OE PCBs with manufacturing processes common to the electronics industry while enabling direct attachment of electronic components onto the board with solder reflow processes as well as board assembly with automated pick-and-place tools. The OE PCB design is based on the use of polymer multimode waveguides, end-fired optical coupling schemes, and simple electro-optic connectors, eliminating the need for additional optical components in the optical layer, such as micro-mirrors and micro-lenses. A proof-of-concept low-cost optical transceiver produced with the proposed integration method is presented. This transceiver is fabricated on a low-cost FR4 substrate, comprises a polymer Y-splitter together with the electronic circuitry of the transmitter and receiver modules and achieves error-free 10-Gb/s bidirectional data transmission. Theoretical studies on the optical coupling efficiencies and alignment tolerances achieved with the employed end-fired coupling schemes are presented while experimental results on the optical transmission characteristics, frequency response, and data transmission performance of the integrated optical links are reported. The demonstrated optoelectronic unit can be used as a front-end optical network unit in short-reach datacommunication links. © 2011-2012 IEEE.