135 resultados para Geometry changes
Resumo:
There is ample evidence that humans are able to control the endpoint impedance of their arms in response to active destabilizing force fields. However, such fields are uncommon in daily life. Here, we examine whether the CNS selectively controls the endpoint impedance of the arm in the absence of active force fields but in the presence of instability arising from task geometry and signal-dependent noise (SDN) in the neuromuscular system. Subjects were required to generate forces, in two orthogonal directions, onto four differently curved rigid objects simulated by a robotic manipulandum. The endpoint stiffness of the limb was estimated for each object curvature. With increasing curvature, the endpoint stiffness increased mainly parallel to the object surface and to a lesser extent in the orthogonal direction. Therefore, the orientation of the stiffness ellipses did not orient to the direction of instability. Simulations showed that the observed stiffness geometries and their pattern of change with instability are the result of a tradeoff between maximizing the mechanical stability and minimizing the destabilizing effects of SDN. Therefore, it would have been suboptimal to align the stiffness ellipse in the direction of instability. The time course of the changes in stiffness geometry suggests that modulation takes place both within and across trials. Our results show that an increase in stiffness relative to the increase in noise can be sufficient to reduce kinematic variability, thereby allowing stiffness control to improve stability in natural tasks.
Resumo:
This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.
Resumo:
A decision is a commitment to a proposition or plan of action based on evidence and the expected costs and benefits associated with the outcome. Progress in a variety of fields has led to a quantitative understanding of the mechanisms that evaluate evidence and reach a decision. Several formalisms propose that a representation of noisy evidence is evaluated against a criterion to produce a decision. Without additional evidence, however, these formalisms fail to explain why a decision-maker would change their mind. Here we extend a model, developed to account for both the timing and the accuracy of the initial decision, to explain subsequent changes of mind. Subjects made decisions about a noisy visual stimulus, which they indicated by moving a handle. Although they received no additional information after initiating their movement, their hand trajectories betrayed a change of mind in some trials. We propose that noisy evidence is accumulated over time until it reaches a criterion level, or bound, which determines the initial decision, and that the brain exploits information that is in the processing pipeline when the initial decision is made to subsequently either reverse or reaffirm the initial decision. The model explains both the frequency of changes of mind as well as their dependence on both task difficulty and whether the initial decision was accurate or erroneous. The theoretical and experimental findings advance the understanding of decision-making to the highly flexible and cognitive acts of vacillation and self-correction.