232 resultados para GaAs material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The all-optical nonlinearity of a quantum well waveguide is studied by measuring the intensity dependent transmission through a Fabry-Perot cavity formed around the guide. Values for the nonlinear refractive index coefficient, η 2, at a wavelength of 1.06μm are obtained for light whose polarisation is either parallel or perpendicular to the quantum well layers. A simple measurement to estimate the two photon absorption coefficient, B2, using relatively low optical power levels is also described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a measurement on a GaAs quantum well waveguide with a high built in field across the quantum wells at a wavelength far from the bandedge. The device structure used for the measurement has been fabricated at STC Technology Ltd and is that of a standard laser ridge structure. In fabrication double heterostructure layers are grown on a [001] n + GaAs substrate, with the active region containing two intrinsic GaAs quantum wells of 10nm thickness separated by 10nm. A 4μm wide ridge is etched to provide transverse optical guiding. The experimental work has involved the use of 1.06μm wavelength light from a Q-switched Nd:YAG laser. Any induced change in refractive index is determined by measuring the change in transmission of the quantum well waveguide Fabry-Perot cavity. The waveguide is placed on a Peltier temperature controller to allow thermal tuning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 μm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses. © 2003 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand how the performance of a liquid-crystal laser depends on the physical properties of the low molar mass nematic host, we have studied the energy threshold and slope efficiency of ten optically pumped liquid-crystal lasers based on different hosts. Specifically, this leads to a variation in the birefringence, the orientational order parameter, and the order parameter of the transition dipole moment of the dye. It is found that low threshold energies and high slope efficiencies correlate with high order parameters and large birefringences. To a first approximation this can be understood by considering analytical expressions for the threshold and slope efficiency, which are derived from the space-independent rate equations for a two-level system, in terms of the macroscopic liquid crystal properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel constitutive model of lung parenchyma, which can be used for continuum mechanics based predictive simulations. To develop this model, we experimentally determined the nonlinear material behavior of rat lung parenchyma. This was achieved via uni-axial tension tests on living precision-cut rat lung slices. The resulting force-displacement curves were then used as inputs for an inverse analysis. The Levenberg-Marquardt algorithm was utilized to optimize the material parameters of combinations and recombinations of established strain-energy density functions (SEFs). Comparing the best-fits of the tested SEFs we found Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1 - 3)3 + 4.1 kPa(-2 ln J + J2 - 1) to be the optimal constitutive model. This SEF consists of three summands: the first can be interpreted as the contribution of the elastin fibers and the ground substance, the second as the contribution of the collagen fibers while the third controls the volumetric change. The presented approach will help to model the behavior of the pulmonary parenchyma and to quantify the strains and stresses during ventilation.