98 resultados para Full-thickness burns
Resumo:
Magnetic nanoparticles are frequently coated with SiO2to improve their functionality and bio-compatibility in a range of biomedical and polymer nanocomposile applications. In this paper, a scalable flame aerosol technology is used to produce highly dispersible, superparamagnetic iron oxide nanoparticles hermetically coaled with silica to retain full magnetization performance. Iron oxide particles were produced by flame spray pyrolysis (FSP) of iron acelylacetonale in xylene/acetonitrile solutions, and the resulting aerosol was in situ coaled with SiO2 by oxidation of swirling hexamethlydisiloxane vapor. The process allows independent control of the core Fe2O3, particle properties and the thickness of their silica coaling film. This ensures that the non-magnetic SiO2 layer can be closely controlled and minimized. The optimal SiO2 content for complete (hermetic) encapsulation of the magnetic core particles was determined by isopropanol chemisorption. The magnetization of Fe2O3 coated with about 2 nm thin SiO2 layers was nearly identical lo that of uncoated, pure Fe2O3 nanoparlicles.
Resumo:
Magnetic nanoparticles are frequently coated with SiO2 to improve their functionality and biocom-patibility in a range of biomedical and polymer nanocomposite applications. In this paper, a scalable flame aerosol technology is used to produce highly dispersible, superparamagnetic iron oxide nanoparticles hermetically coated with silica to retain full magnetization performance. Iron oxide particles were produced by flame spray pyrolysis of iron acetylacetonate in xylene/acetonitrile solutions and the resulting aerosol was in situ coated with silicon dioxide by oxidation of swirling hexamethlydisiloxane vapor. The process allows independent control of the core Fe2O3 (maghemite) particle properties and the thickness of their silica coating film. This ensures that the nonmagnetic SiO2 layer can be closely controlled and minimized. The optimal SiO2 content for complete (hermetic) encapsulation of the magnetic core particles was determined by isopropanol chemisorption. The magnetization of Fe 2O3 coated with about 2 nm thin SiO2 layers was nearly identical to that of uncoated, pure Fe2O3 nanoparticles. © 2009 American Chemical Society.
Resumo:
This article presents a framework that describes formally the underlying unsteady and conjugate heat transfer processes that are undergone in thermodynamic systems, along with results from its application to the characterization of thermodynamic losses due to irreversible heat transfer during reciprocating compression and expansion processes in a gas spring. Specifically, a heat transfer model is proposed that solves the one-dimensional unsteady heat conduction equation in the solid simultaneously with the first law in the gas phase, with an imposed heat transfer coefficient taken from suitable experiments in gas springs. Even at low volumetric compression ratios (of 2.5), notable effects of unsteady heat transfer to the solid walls are revealed, with thermally induced thermodynamic cycle (work) losses of up to 14% (relative to the work input/output in equivalent adiabatic and reversible compression/expansion processes) at intermediate Péclet numbers (i.e., normalized frequencies) when unfavorable solid and gas materials are selected, and closer to 10-12% for more common material choices. The contribution of the solid toward these values, through the conjugate variations attributed to the thickness of the cylinder wall, is about 8% and 2% points, respectively, showing a maximum at intermediate thicknesses. At higher compression ratios (of 6) a 19% worst-case loss is reported for common materials. These results suggest strongly that in designing high-efficiency reciprocating machines the full conjugate and unsteady problem must be considered and that the role of the solid in determining performance cannot, in general, be neglected. © 2014 Richard Mathie, Christos N. Markides, and Alexander J. White. Published with License by Taylor & Francis.
Resumo:
We demonstrate automatic operation of a cooler-less tunable-laser based WDM-PON system. Using a pilot-tone based overhead channel and centralized wavelength locking scheme, 1 Gb/s and 10 Gb/s data transmission is demonstrated in a multi-user set-up. © 2013 Optical Society of America.
Resumo:
There has been an increasing interest in the use of mechanical dynamics, (e.g., assive, Elastic, And viscous dynamics) for energy efficient and agile control of robotic systems. Despite the impressive demonstrations of behavioural performance, The mechanical dynamics of this class of robotic systems is still very limited as compared to those of biological systems. For example, Passive dynamic walkers are not capable of generating joint torques to compensate for disturbances from complex environments. In order to tackle such a discrepancy between biological and artificial systems, We present the concept and design of an adaptive clutch mechanism that discretely covers the full-range of dynamics. As a result, The system is capable of a large variety of joint operations, including dynamic switching among passive, actuated and rigid modes. The main innovation of this paper is the framework and algorithm developed for controlling the trajectory of such joint. We present different control strategies that exploit passive dynamics. Simulation results demonstrate a significant improvement in motion control with respect to the speed of motion and energy efficiency. The actuator is implemented in a simple pendulum platform to quantitatively evaluate this novel approach.
Resumo:
The model of interconnected numerical device segments can give a prediction on the dynamic performance of large area full wafer devices such as the Gate Commutated Thyristors (GCTs) and can be used as an optimisation tool for designing GCTs. In this study the authors evaluate the relative importance of the shallow p-base thickness, its peak concentration, the depth of the p-base and the buffer peak concentration. © The Institution of Engineering and Technology 2014.