146 resultados para FIELD-EMISSION
Resumo:
This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.
Resumo:
We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.
Resumo:
Carbon nanotube (CNT) emitters were formed on line-patterned cathodes in microtrenches through a thermal CVD process. Single-walled carbon nanotubes (SWCNTs) self-organized along the trench lines with a submicron inter-CNT spacing. Excellent field emission (FE) properties were obtained: current densities at the anode (J(a)) of 1 microA cm(-2), 10 mA cm(-2) and 100 mA cm(-2) were recorded at gate voltages (V(g)) of 16, 25 and 36 V, respectively. The required voltage difference to gain a 1:10 000 contrast of the anode current was as low as 9 V, indicating that a very low operating voltage is possible for these devices. Not only a large number of emission sites but also the optimal combination of trench structure and emitter morphology are crucial to achieve the full FE potential of thin CNTs with a practical lifetime. The FE properties of 1D arrays of CNT emitters and their optimal design are discussed. Self-organization of thin CNTs is an attractive prospect to tailor preferable emitter designs in FE devices.
Resumo:
Field emission properties of single-walled carbon nanotubes (SWCNTs), which were prepared through alcohol catalytic chemical vapor deposition for 10-60s, were characterized in a diode configuration. Protrusive bundles at the top surface of samples act selectively as emission sites. The number of emission sites was controlled by emitter morphologies combined with texturing of Si substrates. SWCNTs grown on a textured Si substrate exhibited a turn-on field as low as 2.4 V/μm at a field emission current density of 1 μA/cm 2. Uniform spatial luminescence (0.5 cm2) from the rear surface of the anode was revealed for SWCNTs prepared on the textured Si substrate. Deterioration of field emission properties through repetitive measurements was reduced for the textured samples in comparison with vertically aligned SWCNTs and a random network of SWCNTs prepared on flat Si substrates. Emitter morphology resulting in improved field emission properties is a crucial factor for the fabrication of SWCNT-electron sources. Morphologically controlled SWCNTs with promising emitter performance are expected to be practical electron sources. © 2008 The Japan Society of Applied Physics.
Resumo:
We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper will cover several applications of a particular type of field emitter- the carbon nanotube (CNT). The growth of CNTs and their optimization for use in various applications including, parallel e-beam lithography, field emission displays and microwave sources, is considered. © 2012 IEEE.
Resumo:
A good quality graphene is transferred onto honeycomb-like CNTs arrays with inner supporting CNTs. The efficient field emission is demonstrated due to a high aspect ratio protrusions and graphene crack edges. A high efficient current density about 1.2 mA/cm2 at threshold electric field of 7.8 V/μm with a turn-on electric field of 1.8 V/μm at the current density of 10 μA/cm2 is observed due to high localized electric field. Stable field emission is tested in a vacuum chamber. The results are of significance to the development of Graphene based field emitters. © 2013 IEEE.