101 resultados para Equations, Simultaneous


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embedded propulsion systems, such as for example used in advanced hybrid-wing body aircraft, can potentially offer major fuel burn and noise reduction benefits but introduce challenges in the aerodynamic and acoustic integration of the high-bypass ratio fan system. A novel approach is proposed to quantify the effects of non-uniform flow on the generation and propagation of multiple pure tone noise (MPTs). The new method is validated on a conventional inlet geometry first. The ultimate goal is to conduct a parametric study of S-duct inlets in order to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the mechanism underlying the distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the MPT noise generation mechanisms while greatly reducing computational cost. A single, 3-D full-wheel unsteady CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted mean flow. Several numerical tools were developed to enable the implementation of this new approach. Parametric studies were conducted to determine appropriate grid and time step sizes for the propagation of acoustic waves. The Ffowcs-Williams and Hawkings integral method is used to propagate the noise to far field receivers. Non-reflecting boundary conditions are implemented through the use of acoustic buffer zones. The body force modeling approach is validated and proof-of-concept studies demonstrate the generation of disturbances at both blade-passing and shaft-order frequencies using the perturbed body force method. The full methodology is currently being validated using NASA's Source Diagnostic Test (SDT) fan and inlet geometry. Copyright © 2009 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique using spectrum-shaping codes to create nulls in the baseband spectrum of an Ethernet signal, so that several RF signals can be inserted in-band, is demonstrated by simultaneous transmission of 10GbE and WCDMA signals. © 2013 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we consider second order compact upwind schemes with a space split time derivative (CABARET) applied to one-dimensional compressible gas flows. As opposed to the conventional approach associated with incorporating adjacent space cells we use information from adjacent time layer to improve the solution accuracy. Taking the first order Roe scheme as the basis we develop a few higher (i.e. second within regions of smooth solutions) order accurate difference schemes. One of them (CABARET3) is formulated in a two-time-layer form, which makes it most simple and robust. Supersonic and subsonic shock-tube tests are used to compare the new schemes with several well-known second-order TVD schemes. In particular, it is shown that CABARET3 is notably more accurate than the standard second-order Roe scheme with MUSCL flux splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique using spectrum-shaping codes to create nulls in the baseband spectrum of an Ethernet signal, so that several RF signals can be inserted in-band, is demonstrated by simultaneous transmission of 10GbE and WCDMA signals. © 2013 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10 6-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect. © 2014 AIP Publishing LLC.