120 resultados para Embedded Case Study
Resumo:
Industrialists have few example processes they can benchmark against in order to choose a multi-agent development kit. In this paper we present a review of commercial and academic agent tools with the aim of selecting one for developing an intelligent, self-serving asset architecture. In doing so, we map and enhance relevant assessment criteria found in literature. After a preliminary review of 20 multiagent platforms, we examine in further detail those of JADE, JACK and Cougaar. Our findings indicate that Cougaar is well suited for our requirements, showing excellent support for criteria such as scalability, persistence, mobility and lightweightness. © 2010 IEEE.
Resumo:
in the last 10 years many designs and trial implementations of holonic manufacturing systems have been reported in the literature. Few of these have resulted in any industrial take up of the approach and part of this lack of adoption might be attributed to a shortage of evaluations of the resulting designs and implementations and their comparison with more conventional approaches. This paper proposes a simple approach for evaluating the effectiveness of a holonic system design, with particular focus on the ability of the system to support reconfiguration (in the face of change). A case study relating to a laboratory assembly system is provided to demonstrate the evaluation approach. Copyright © 2005 IFAC.
Resumo:
This paper advocates 'reduce, reuse, recycle' as a complete energy savings strategy. While reduction has been common to date, there is growing need to emphasize reuse and recycling as well. We design a DC-DC buck converter to demonstrate the 3 techniques: reduce with low-swing and zero voltage switching (ZVS), reuse with supply stacking, and recycle with regulated delivery of excess energy to the output load. The efficiency gained from these 3 techniques helps offset the loss of operating drivers at very high switching frequencies which are needed to move the output filter completely on-chip. A prototype was fabricated in 0.18μm CMOS, operates at 660MHz, and converts 2.2V to 0.75-1.0V at ∼50mA.1 © 2008 IEEE.
Resumo:
A small low air-speed wind turbine blade case study is used to demonstrate the effectiveness of a materials and design selection methodology described by Monroy Aceves et al. (2008) [24] for composite structures. The blade structure comprises a shell of uniform thickness and a unidirectional reinforcement. The shell outer geometry is fixed by aerodynamic considerations. A wide range of lay-ups are considered for the shell and reinforcement. Structural analysis is undertaken using the finite element method. Results are incorporated into a database for analysis using material selection software. A graphical selection stage is used to identify the lightest blade meeting appropriate design constraints. The proposed solution satisfies the design requirements and improves on the prototype benchmark by reducing the mass by almost 50%. The flexibility of the selection software in allowing identification of trends in the results and modifications to the selection criteria is demonstrated. Introducing a safety factor of two on the material failure stresses increases the mass by only 11%. The case study demonstrates that the proposed design methodology is useful in preliminary design where a very wide range of cases should be considered using relatively simple analysis. © 2011 Elsevier Ltd.
Resumo:
Information is one of the most important resources in our globalized economy. The value of information often exceeds the value of physical assets. Information quality has, in many ways, an impact on asset management organisations and asset managers struggle to understand and to quantify it, which is a prerequisite for effective information quality improvement. Over the past few years, we have developed an innovative management concept that addresses these new asset management challenges: a process for Total Information Risk Management (TIRM), which has been already tested in a number of asset management industries. The TIRM process enables to manage information quality more effectively in asset management organisations as it focuses specifically on the risks that are imposed by information quality. In this paper, we show how we have applied the TIRM process in an in-depth study at a medium-sized European utility provider, the Manx Electricity Authority (MEA), at the Isle of Man.
Resumo:
This paper provides a case study on the deepest excavation carried out so far in the construction of the metro network in Shanghai, which typically features soft ground. The excavation is 38 m deep with retaining walls 65 m deep braced by 9 levels of concrete props. To obtain a quick and rough prediction, two centrifuge model tests were conducted, in which one is for the 'standard' section with green field surrounding and the other with an adjacent piled building. The tests were carried out in a run-stop-excavation-run style, in which excavation was conducted manually. By analyzing the lateral wall displacement, ground deformation, bending moment and earth pressure, the test results are shown to be reasonably convincing and the design and construction were validated. Such industry orientated centrifuge modeling was shown to be useful in understanding the performance of geotechnical processes, especially when engineers lack relevant field experience. © 2010 Taylor & Francis Group, London.
Resumo:
The recent advances in urban wireless communications and protocols that spurred the development of city-wide wireless infrastructure motivated this research, since in many cases, construction sites are not conveniently located for wired connectivity. Large scale transportation projects for example, such as new highways, railroad tracks and the networks of utilities (power-lines, phone lines, mobile towers, etc) that usually follow them are constructed in areas where wired infrastructure for data exchange is often expensive and time-consuming to deploy. The communication difficulties that can be encountered in such construction sites can be addressed with a wireless communications link between the construction site and the decision-making office. This paper presents a case study on long-range, wireless communications suitable for data exchange between construction sites and engineering headquarters. The purpose of this study was to define the requirements for a reliable wireless communications model where common types of electronic construction data will be exchanged in a fast and efficient manner, and construction site personnel will be able to interact and share knowledge, information and electronic resources with the office staff.
Resumo:
The response of buildings to tunnelling induced ground movements is an area of great importance for many urban tunnelling projects. This paper presents the response of two buildings to the construction of a 12 m diameter sprayed concrete lining (SCL) tunnel with face reinforcement, in Italy. Soil and structure displacements were monitored through extensive instrumentation. The settlement response of the two buildings was found to differ significantly, demonstrating both flexible and rigid response mechanisms. Comparison of the building settlement profiles with greenfield settlements enables the soil structure interaction to be quantified. Encouraging agreement between the modification to the greenfield settlement profile displayed by buildings and estimates made from existing predictive tools is observed. Potential issues for infrastructure connected to buildings, arising from the embedment of rigid buildings into the soil, are also highlighted. © 2012 Taylor & Francis Group.
Resumo:
The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop building stock models. This research proposes an engineering-based bottom-up stock model in a probabilistic manner to address these issues. School buildings are used for illustrating the application of this probabilistic method. Two sampling-based global sensitivity methods are used to identify key factors affecting building energy performance. The sensitivity analysis methods can also create statistical regression models for inverse analysis, which are used to estimate input information for building stock energy models. The effects of different energy saving measures are analysed by changing these building stock input distributions.
Resumo:
Space heating accounts for a large portion of the world's carbon dioxide emissions. Ground Source Heat Pumps (GSHPs) are a technology which can reduce carbon emissions from heating and cooling. GSHP system performance is however highly sensitive to deviation from design values of the actual annual energy extraction/rejection rates from/to the ground. In order to prevent failure and/or performance deterioration of GSHP systems it is possible to incorporate a safety factor in the design of the GSHP by over-sizing the ground heat exchanger (GHE). A methodology to evaluate the financial risk involved in over-sizing the GHE is proposed is this paper. A probability based approach is used to evaluate the economic feasibility of a hypothetical full-size GSHP system as compared to four alternative Heating Ventilation and Air Conditioning (HVAC) system configurations. The model of the GSHP system is developed in the TRNSYS energy simulation platform and calibrated with data from an actual hybrid GSHP system installed in the Department of Earth Science, University of Oxford, UK. Results of the analysis show that potential savings from a full-size GSHP system largely depend on projected HVAC system efficiencies and gas and electricity prices. Results of the risk analysis also suggest that a full-size GSHP with auxiliary back up is potentially the most economical system configuration. © 2012 Elsevier Ltd.
Resumo:
Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.