155 resultados para EFFICIENT BLUE ELECTROLUMINESCENCE
Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates
Resumo:
A block-based motion estimation technique is proposed which permits a less general segmentation performed using an efficient deterministic algorithm. Applied to image pairs from the Flower Garden and Table Tennis sequences, the algorithm successfully localizes motion discontinuities and detects uncovered regions. The algorithm is implemented in C on a Sun Sparcstation 20. The gradient-based motion estimation required 28.8 s CPU time, and 500 iterations of the segmentation algorithm required 32.6 s.
Resumo:
This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.
Resumo:
In this paper we will describe new bimesogenic nematic liquid crystals that have high flexoelectro-optic coefficients (e/K),of the order of 1.5 CN 1 m-1, high switching angles, up to 100° and fast response times, of the order of 100μs or less. We will describe devices constructed, using the ULH texture that may be switched to the optimum angle of 45° for a birefringence based device with the fields of 4Vμm-1 over a wide temperature range. Such devices use an "in plane" optical switching mode, have gray scale capability and a wide viewing angle. We will describe devices using the USH or Grandjean texture that have an optically isotropic "field off" black state, uses "in plane" switching E fields, to give an induced birefringence phase device, with switching times of the order of 20μs. We will briefly describe new highly reflective Blue Phase devices stable over a 50V temperature range in which an electric field is used to switch the reflection from red to green, for example. Full RGB reflections may be obtained with switching times of a few milliseconds. Finally we will briefly mention potential applications including high efficiency RGB liquid crystal laser sources. © 2006 SID.
Resumo:
In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.
Resumo:
In a Text-to-Speech system based on time-domain techniques that employ pitch-synchronous manipulation of the speech waveforms, one of the most important issues that affect the output quality is the way the analysis points of the speech signal are estimated and the actual points, i.e. the analysis pitchmarks. In this paper we present our methodology for calculating the pitchmarks of a speech waveform, a pitchmark detection algorithm, which after thorough experimentation and in comparison with other algorithms, proves to behave better with our TD-PSOLA-based Text-to-Speech synthesizer (Time- Domain Pitch-Synchronous Overlap Add Text to Speech System).
A computationally efficient software application for calculating vibration from underground railways
Resumo:
The PiP model is a software application with a user-friendly interface for calculating vibration from underground railways. This paper reports about the software with a focus on its latest version and the plans for future developments. The software calculates the Power Spectral Density of vibration due to a moving train on floating-slab track with track irregularity described by typical values of spectra for tracks with good, average and bad conditions. The latest version accounts for a tunnel embedded in a half space by employing a toolbox developed at K.U. Leuven which calculates Green's functions for a multi-layered half-space. © 2009 IOP Publishing Ltd.
Resumo:
We present a new software framework for the implementation of applications that use stencil computations on block-structured grids to solve partial differential equations. A key feature of the framework is the extensive use of automatic source code generation which is used to achieve high performance on a range of leading multi-core processors. Results are presented for a simple model stencil running on Intel and AMD CPUs as well as the NVIDIA GT200 GPU. The generality of the framework is demonstrated through the implementation of a complete application consisting of many different stencil computations, taken from the field of computational fluid dynamics. © 2010 IEEE.
Resumo:
A receding horizon steering controller is presented, capable of pushing an oversteering nonlinear vehicle model to its handling limit while travelling at constant forward speed. The controller is able to optimise the vehicle path, using a computationally efficient and robust technique, so that the vehicle progression along a track is maximised as a function of time. The resultant method forms part of the solution to the motor racing objective of minimising lap time. © 2011 AACC American Automatic Control Council.