108 resultados para Dielectric ceramic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of material removal were investigated during the erosive wear of a glass-ceramic. The effects of erodent particle shape, velocity and angle were studied. Single impacts and incremental erosion tests were performed, to study the development of surface features and to elucidate the mechanisms of material removal. It was found that transitions in mechanism occurred which depended on the particle shape, impact velocity and impact angle. The mechanisms of material removal, for erosion by silica sand, changed from fine scale fracture and plastic processes below a transition point to large-scale cracking of the surface above. Spherical glass beads caused wear dominated by fatigue, with a very strong dependence of wear rate on the impact conditions. This work indicates that laboratory erosion testing of glass-ceramic and other brittle materials should reflect the conditions present in practice, and that account must be taken of possible changes in wear mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high performance ceramics and ceramic composites often relies on assumptions about their behaviour during loading and at failure. A crucial influence on the mechanical properties of these materials is the degree of sub-critical cracking, which post mortem investigations cannot adequately reveal. Hence a clear picture of the dynamic micromechanisms of cracking is required if applications of fracture and damage mechanics to theoretical models is to be meaningful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition using optical microscopy, high resolution transmission electron microscopy and Raman spectroscopy. We find that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain-sized few layer graphene. Hence we regard this as an interesting non-metallic catalyst model system with the potential to explore graphene growth directly on a (high-k) dielectric. HfO2 nanoparticles coated with few layer graphene by atmospheric pressure CVD with methane and hydrogen at 950 °C. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Graphene growth on hafnia (HfO2) nanoparticles by chemical vapour deposition (CVD) is studied. It is found that monoclinic HfO2 nanoparticles neither reduce to a metal nor form a carbide while nucleating nanometer domain-sized few layer graphene. Hence the authors of this Letter regard this as an interesting non-metallic catalyst model system with the potential to explore graphene growth directly on a (high-k) dielectric. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A short channel vertical thin film transistor (VTFT) with 30 nm SiN x gate dielectric is reported for low voltage, high-resolution active matrix applications. The device demonstrates an ON/OFF current ratio as high as 10 9, leakage current in the fA range, and a sub-threshold slope steeper than 0.23 V/dec exhibiting a marked improvement with scaling of the gate dielectric thickness. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a large improvement in the wetting of Al 2O 3 thin films grown by un-seeded atomic layer deposition on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al 2O 3/graphene stack is then transferred to SiO 2 by standard methods. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified gel-casting technique was used to fabricate a 1-3 piezoelectric ceramic/polymer composite substrate formed by irregular-shaped pillar arrays of small dimensions and kerfs. This technique involves the polymerization of aqueous piezoelectric (PZT) suspensions with added water-soluble epoxy resin and polyamine-based hardener that lead to high strength, high density and resilient ceramic bodies. Soft micromoulding was used to shape the ceramic segments, and micropillars with lateral features down to 4 m and height-to-width aspect ratios of ∼10 were achieved. The composite exhibited a clear thickness resonance mode at approximately 70 MHz and a k eff ∼ 0.51, demonstrating that the ceramic micropillars possess good electrical properties. Furthermore, gel-casting allows the fabrication of ceramic structures with non-conventional shapes; hence, device design is not limited by the standard fabrication methods. This is of particular benefit for high-frequency transducers where the critical design dimensions are reduced. © 2012 IOP Publishing Ltd.