114 resultados para Decision supports
Resumo:
Establishing a function for the neuromodulator serotonin in human decision-making has proved remarkably difficult because if its complex role in reward and punishment processing. In a novel choice task where actions led concurrently and independently to the stochastic delivery of both money and pain, we studied the impact of decreased brain serotonin induced by acute dietary tryptophan depletion. Depletion selectively impaired both behavioral and neural representations of reward outcome value, and hence the effective exchange rate by which rewards and punishments were compared. This effect was computationally and anatomically distinct from a separate effect on increasing outcome-independent choice perseveration. Our results provide evidence for a surprising role for serotonin in reward processing, while illustrating its complex and multifarious effects.
Resumo:
Genetic variation at the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with altered amygdala reactivity and lack of prefrontal regulatory control. Similar regions mediate decision-making biases driven by contextual cues and ambiguity, for example the "framing effect." We hypothesized that individuals hemozygous for the short (s) allele at the 5-HTTLPR would be more susceptible to framing. Participants, selected as homozygous for either the long (la) or s allele, performed a decision-making task where they made choices between receiving an amount of money for certain and taking a gamble. A strong bias was evident toward choosing the certain option when the option was phrased in terms of gains and toward gambling when the decision was phrased in terms of losses (the frame effect). Critically, this bias was significantly greater in the ss group compared with the lala group. In simultaneously acquired functional magnetic resonance imaging data, the ss group showed greater amygdala during choices made in accord, compared with those made counter to the frame, an effect not seen in the lala group. These differences were also mirrored by differences in anterior cingulate-amygdala coupling between the genotype groups during decision making. Specifically, lala participants showed increased coupling during choices made counter to, relative to those made in accord with, the frame, with no such effect evident in ss participants. These data suggest that genetically mediated differences in prefrontal-amygdala interactions underpin interindividual differences in economic decision making.
Resumo:
Human choices are remarkably susceptible to the manner in which options are presented. This so-called "framing effect" represents a striking violation of standard economic accounts of human rationality, although its underlying neurobiology is not understood. We found that the framing effect was specifically associated with amygdala activity, suggesting a key role for an emotional system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the importance of incorporating emotional processes within models of human choice and suggests how the brain may modulate the effect of these biasing influences to approximate rationality.
Planning the handling of tunnel excavation material - A process of decision making under uncertainty
Resumo:
Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.
Resumo:
Switching between two modes of operation is a common property of biological systems. In continuous-time differential equation models, this is often realised by bistability, i.e. the existence of two asymptotically stable steadystates. Several biological models are shown to exhibit delayed switching, with a pronounced transient phase, in particular for near-threshold perturbations. This study shows that this delay in switching from one mode to the other in response to a transient input is reflected in local properties of an unstable saddle point, which has a one dimensional unstable manifold with a significantly slower eigenvalue than the stable ones. Thus, the trajectories first approximatively converge to the saddle point, then linger along the saddle's unstable manifold before quickly approaching one of the stable equilibria. ©2010 IEEE.
Resumo:
© 2012 Elsevier Ltd. Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.
Resumo:
We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.
Resumo:
Designing technology products that embrace the needs and capabilities of heterogeneous users leads not only to increased customer satisfaction and enhanced corporate social responsibility, but also better market penetration. Yet, achieving inclusion in today's pressured and fast-moving markets is not straight-forward. For a time, inaccessible and unusable design was solely seen as the fault of designers and a whole line of research was dedicated to pinpointing their frailties. More recently, it has become progressively more recognised that it is not necessarily designers' lack of awareness, or unwillingness, that results in sub-optimal design, but rather there are multi-faceted organisational factors at play that seldom provide an adequate environment in which inclusive products could be designed. Through literature review, a detailed audit of inclusivity practice in a large global company and ongoing research regarding quantification of cost-effectiveness of inclusive design, this paper discusses the overarching operational problems that prevent organisations from developing optimally inclusive products and offers best-practice principles for the future. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
We grow ultra-high mass density carbon nanotube forests at 450°C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm -3. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth on conductors. © 2013 AIP Publishing LLC.
Resumo:
The most common approach to decision making in multi-objective optimisation with metaheuristics is a posteriori preference articulation. Increased model complexity and a gradual increase of optimisation problems with three or more objectives have revived an interest in progressively interactive decision making, where a human decision maker interacts with the algorithm at regular intervals. This paper presents an interactive approach to multi-objective particle swarm optimisation (MOPSO) using a novel technique to preference articulation based on decision space interaction and visual preference articulation. The approach is tested on a 2D aerofoil design case study and comparisons are drawn to non-interactive MOPSO. © 2013 IEEE.
Resumo:
Dynamism and uncertainty are real challenges for present day manufacturing enterprises (MEs). Reasons include: an increasing demand for customisation, reduced time to market, shortened product life cycles and globalisation. MEs can reduce competitive pressure by becoming reconfigurable and change-capable. However, modern manufacturing philosophies, including agile and lean, must complement the application of reconfigurable manufacturing paradigms. Choosing and applying the best philosophies and techniques is very difficult as most MEs deploy complex and unique configurations of processes and resource systems, and seek economies of scope and scale in respect of changing and distinctive product flows. It follows that systematic methods of achieving model driven reconfiguration and interoperation of component based manufacturing systems are required to design, engineer and change future MEs. This thesis, titled Enhanced Integrated Modelling Approach to Reconfiguring Manufacturing Enterprises , introduces the development and prototyping a model-driven environment for the design, engineering, optimisation and control of the reconfiguration of MEs with an embedded capability to handle various types of change. The thesis describes a novel systematic approach, namely enhanced integrated modelling approach (EIMA), in which coherent sets of integrated models are created that facilitates the engineering of MEs especially their production planning and control (PPC) systems. The developed environment supports the engineering of common types of strategic, tactical and operational processes found in many MEs. The EIMA is centred on the ISO standardised CIMOSA process modelling approach. Early study led to the development of simulation models during which various CIMOSA shortcomings were observed, especially in its support for aspects of ME dynamism. A need was raised to structure and create semantically enriched models hence forming an enhanced integrated modelling environment. The thesis also presents three industrial case examples: (1) Ford Motor Company; (2) Bradgate Furniture Manufacturing Company; and (3) ACM Bearings Company. In order to understand the system prior to realisation of any PPC strategy, multiple process segments of any target organisation need to be modelled. Coherent multi-perspective case study models are presented that have facilitated process reengineering and associated resource system configuration. Such models have a capability to enable PPC decision making processes in support of the reconfiguration of MEs. During these case studies, capabilities of a number of software tools were exploited such as Arena®, Simul8®, Plant Simulation®, MS Visio®, and MS Excel®. Case study results demonstrated effectiveness of the concepts related to the EIMA. The research has resulted in new contributions to knowledge in terms of new understandings, concepts and methods in following ways: (1) a structured model driven integrated approach to the design, optimisation and control of future reconfiguration of MEs. The EIMA is an enriched and generic process modelling approach with capability to represent both static and dynamic aspects of an ME; and (2) example application cases showing benefits in terms of reduction in lead time, cost and resource load and in terms of improved responsiveness of processes and resource systems with a special focus on PPC; (3) identification and industrial application of a new key performance indicator (KPI) known as P3C the measuring and monitoring of which can aid in enhancing reconfigurability and responsiveness of MEs; and (4) an enriched modelling concept framework (E-MUNE) to capture requirements of static and dynamic aspects of MEs where the conceptual framework has the capability to be extended and modified according to the requirements. The thesis outlines key areas outlining a need for future research into integrated modelling approaches, interoperation and updating mechanisms of partial models in support of the reconfiguration of MEs.