110 resultados para DB
Resumo:
Multimode polymer waveguides are promising for use in board-level optical interconnects. In recent years, various on-board optical interconnection architectures have been demonstrated making use of passive routing waveguide components. In particular, 90° bends have played important roles in complex waveguide layouts enabling interconnection between non co-linear points on a board. Due to the dimensions and index step of the waveguides typically used in on-board optical interconnects, low-loss bends are typically limited to a radius of ∼ 10 mm. This paper therefore presents the design and fabrication of compact low-loss waveguide bends with reduced radii of curvature, offering significant reductions in the required areas for on-board optical circuits. The proposed design relies on the exposure of the bend section to the air, achieving tighter light confinement along the bend and reduced bending losses. Simulation studies carried out with ray tracing tools and experimental results from polymer samples fabricated on FR4 are presented. Low bending losses are achieved from the air-exposed bends up to 4 mm of radius of curvature, while an improvement of 14 μm in the 1 dB alignment tolerances at the input of these devices (fibre to waveguide coupling) is also obtained. Finally, the air-exposed bends are employed in an optical bus structure, offering reductions in insertion loss of up to 3.8 dB. © 2013 IEEE.
Resumo:
We report the first hybrid mode-locking of a monolithic two-section multiple quantum well InGaN based laser diode. This device, with a length of 1.5 mm, has a 50-μm-long absorber section located at the back facet and generates a continuous stable 28.6 GHz pulse train with an average output power of 9.4 mW at an emission wavelength of 422 nm. Under hybrid mode-locking, the pulse width reduces to 4 ps, the peak power increases to 72 mW, and the microwave linewidth reduces by 13 dB to <500 kHz. We also observe the passive mode-locking with pulse width and peak power of 8 ps and 37 mW, respectively. © 1989-2012 IEEE.
Resumo:
LED-based carrierless amplitude and phase modulation is investigated for a multi-gigabit plastic optical fibre link. An FPGA-based 1.5 Gbit/s error free transmission over 50 m standard SI-POF using CAP64 is achieved, providing 2.9 dB power margin without forward error correction. © 2012 OSA.
Resumo:
A scalable monolithically integrated photonic space switch is proposed which uses a combination of Mach-Zehnder modulators and semiconductor optical amplifiers (SOAs) for improved crosstalk performance and reduced switch loss. This architecture enables the design of high-capacity, high-speed, large-port count, low-energy switches. Extremely low crosstalk of better than -50 dB can be achieved using a 2 × 2 dilated hybrid switch module. A 'building block' approach is applied to make large port count optical switches possible. Detailed physical layer multiwavelength simulations are used to investigate the viability of a 64 × 64 port switch. Optical signal degradation is estimated as a function of switch size and waveguide induced crosstalk. A comparison between hybrid and SOA switching fabrics highlights the power-efficient, high-performance nature of the hybrid switch design, which consumes less than one-third of the energy of an equivalent SOA-based switch. The significantly reduced impairments resulting from this switch design enable scaling of the port count, compared to conventional SOA-based switches. © 1983-2012 IEEE.
Resumo:
An integrated downconversion CMOS mixer incorporating a comprehensive compensation scheme is presented which aims to minimise second-order intermodulation distortion (IMD2). Unlike previously reported IMD2 calibration schemes which tune only one nonlinear factor at a time, the presented solution allows simultaneous adjustment of several different factors thus achieving a better compensation. The mixer has been implemented in UMC 0.18 μm CMOS to verify the proposed scheme and for comparison with alternative compensation methods. Measurements show that the solution described can improve the input intercept point (IIP2) by over 20 dB while maintaining good amplification and noise performance. IMD2 calibration results are presented and show useful advantages over other approaches. To the best of the authors' knowledge, this scheme for IMD2 calibration has not been previously reported. © The Institution of Engineering and Technology 2013.
Resumo:
The transient crosstalk in a phase-only liquid crystal on silicon (LCOS) based wavelength selective switch using a Fourier transform setup was investigated. Its origin was identified using an in situ test procedure and found to be related to the transient phase patterns displayed by the LCOS device during the switching. Two different methods were proposed to reduce the transient crosstalk without the need to modify the optics or electronics in use. Experimental results show both methods are able to reduce the worst-case transient crosstalk by at least 5 dB. © 1983-2013 IEEE.
Resumo:
Multimode polymer waveguides are an attractive transmission medium for board-level optical links as they provide high bandwidth, relaxed alignment tolerances, and can be directly integrated onto conventional printed circuit boards. However, the performance of multimode waveguide components depends on the launch conditions at the component input, complicating their use in topologies that require the concatenation of multiple multimode components. This paper presents key polymer components for a multichannel optical bus and reports their performance under different launch conditions, enabling useful rules that can be used to design complex interconnection topologies to be derived. The components studied are multimode signal splitters and combiners, 90°-crossings, S-bends, and 90°-bends. By varying the width of the splitter arms, a splitting ratio between 1% and 95% is achieved from the 1 × 2 splitters, while low-loss signal combining is demonstrated with the waveguide combiners. It is shown that a 3 dB improvement in the combiner excess loss can be achieved by increasing the bus width by 50 μm. The worst-case insertion loss of 50 × 100 μm waveguide crossings is measured to be 0.1 dB/crossing. An empirical method is proposed and used to estimate the insertion losses of on-board optical paths of a polymeric four-channel optical bus module. Good agreement is achieved between the predicted and measured values. Although the components and empirical method have been tailored for use in a multichannel optical bus architecture, they can be used for any on-board optical interconnection topology. © 1983-2012 IEEE.
Resumo:
The design and characterization of polymer-based multimode 90°-crossings, combinersand splitters exhibiting excess losses below 0.1 dB/crossing, 2 dB and 3 dB respectively arereported. The devices enable the realization of an on-board optical bus. © OSA 2012.
Resumo:
A 4-channel polymeric optical bus module suitable for use in board-levelinterconnections is presented. Low-loss and low-crosstalk module performance is achieved, while-1 dB alignment tolerances better than ± 8 μm are demonstrated. © OSA 2012.
Resumo:
A multi-functional 1 × 9 wavelength selective switch based on liquid crystal on silicon (LCOS) spatial light modulator technology and anamorphic optics was tested at a channel spacing of 100 and 200 GHz, including dynamic data measurements on both single beam deflection and multi-casting to two ports. The multi-casting holograms were optimized using a modified Gerchberg-Saxton routine to design the core hologram, followed by a simulated annealing routine to reduce crosstalk at non-switched ports. The effect of clamping the magnitude of phase changes between neighboring pixels during optimization was investigated, with experimental results for multi-casting to two ports resulting in a signal insertion loss of-7.6 dB normalized to single port deflection, a uniformity of ±0.6%, and a worst case crosstalk of-19.4 dB, which can all be improved further by using a better anti-reflection coating on the LCOS SLM coverplate and other measures. © 2013 IEEE.
Resumo:
In this paper we study the optimization of interleaved Mach-Zehnder silicon carrier depletion electro-optic modulator. Following the simulation results we demonstrate a phase shifter with the lowest figure of merit (modulation efficiency multiplied by the loss per unit length) 6.7 V-dB. This result was achieved by reducing the junction width to 200 nm along the phase-shifter and optimizing the doping levels of the PN junction for operation in nearly fully depleted mode. The demonstrated low FOM is the result of both low V(π)L of ~0.78 Vcm (at reverse bias of 1V), and low free carrier loss (~6.6 dB/cm for zero bias). Our simulation results indicate that additional improvement in performance may be achieved by further reducing the junction width followed by increasing the doping levels.
Resumo:
We demonstrate a nanoscale mode selector supporting the propagation of the first antisymmetric mode of a silicon waveguide. The mode selector is based on embedding a short section of PhC into the waveguide. On the basis of the difference in k-vector distribution between orthogonal waveguide modes, the PhC can be designed to have a band gap for the fundamental mode, while allowing the transmission of the first antisymmetric mode. The device was tested by directly measuring the modal content before and after the PhC section using a near field scanning optical microscope. Extinction ratio was estimated to be approximately 23 dB. Finally, we provide numerical simulations demonstrating strong coupling of the antisymmetric mode to metallic nanotips. On the basis of the results, we believe that the mode selector may become an important building block in the realization of on chip nanofocusing devices.