116 resultados para Cu atoms
Resumo:
We comment on the paper by N Hari Babu et al. (2002 Supercond. Sci. Technol. 15 104-10) and point out misinterpretations of the chemical composition of U-bearing deposits observed in Y123. The observed small deposits are those of new compounds which do not contain Cu, rather than refined Y211 plus U, as stated by the authors. We further note that extensive literature, not quoted, is in disagreement by nearly an order of magnitude concerning the values of Pt and U doping at which the optimum value of Jc is obtained. Other related information, presently in the literature, which may be helpful to those working with this high temperature superconducting chemical system, is presented.
Resumo:
Melt grown Nd-Ba-Cu-O (NdBCO) has been reported to exhibit higher values of critical current density, Jc and irreversibility field, Hirr, than other (RE)BCO superconductors, such as YBCO. The microstructure of NdBCO typically contains 5-10 μm sized inclusions of the Nd4Ba2Cu2O10 phase (Nd-422) in a superconducting NdBa2Cu3O7-δ phase (Nd-123) matrix. The average size of these inclusions is characteristically larger than that of the Y2BaCuO5 (Y-211) inclusions in YBCO. As a result, there is scope to further refine the Nd-422 size to enhance Jc in NdBCO. Large grain samples of NdBCO superconductor doped with various amounts of depleted UO2 and containing excess Nd-422 have been fabricated by top seeded melt growth under reduced oxygen partial pressure. The effect of the addition of depleted UO2 on the NdBCO microstructure has been studied systematically in samples with and without added CeO2. It is observed that the addition of UO2 refines the NdBCO microstructure via the formation of uranium-containing phase particles in the superconducting matrix. These particles are of approximately spherical geometry with dimensions of around 1 μm. The average size of the nonsuperconducting phase particles in the uranium-doped microstructure is an order of magnitude less than their size in un-doped Nd-123 prepared with excess Nd-422. The critical current density of uranium-doped NdBCO is observed to increase significantly compared to the undoped material.
Resumo:
Large, single grain Nd-Ba-Cu-O (NdBCO) composite samples of NdBa2Cu3O7-δ (Nd-123) containing 15 and 20 mol. % non-superconducting Nd4Ba2Cu2O10 (Nd-422) phase inclusions have been fabricated successfully by a variety of techniques based on top-seeded melt growth under reduced oxygen partial pressure. Specifically, individual grains up to 2cm in diameter have been grown using (100) oriented MgO seeding, self (NdBCO) seeding at elevated temperature and self-seeding of Ag and Au doped precursor pellets. The latter exhibit a reduced peritectic decomposition temperature compared with the undoped compound. These techniques, which vary in degree of difficulty and hence reliability, yield grains with a range of microstructural homogeneity. This paper describes the general aspects of large NdBCO grain fabrication and presents the results of the different fabrication techniques.
Resumo:
The effect of size, morphology and crystallinity of seed crystals on the nucleation and growth of large grain Y-Ba-Cu-O (YBCO) bulk superconductors fabricated by top seeded melt growth (TSMG) has been investigated. Seeding bulk samples with small, square shaped seed crystals leads to point nucleation and growth of the superconducting YBa2Cu3O7-y (Y-123) phase that exhibits the usual square habitual growth symmetry. The use of triangular and circular shaped seed crystals, however, modifies significantly the growth habit geometry of the grain. The use of large area seeds both increases the rate of epitaxial nucleation of the Y-123 phase and produces relatively large crystals in the incongruent melt, which decreases significantly the processing times of large grain samples. The present study is relevant to decrease processing times of samples with both preferred or no growth sectors and for multiple seeding of large grain samples which contain clean grain boundaries. © 2005 Published by Elsevier Ltd.
Resumo:
Nano-phase (5-20 nm) particles of YBa2(Cu0.5M 0.6)O6 [where M = Nb, Ta, Mo, W, Zr and Hf] have been introduced successfully into RE-Ba-Cu-O single grain superconductors. A study to enlarge the size of a single grain containing these particles has been carried out involving measurement of the growth rate as a function of YBa 2(Cu0.5M0.6)O6 phase concentration and degree of un-dercooling. The influence of the change in YBa2 (Cu0.8M0.5)O6 concentration on microstructural features is also investigated and the superconducting properties of these large grain superconductors are presented. © 2005 IEEE.
Resumo:
Gd-Ba-Cu-O (GdBCO) single grains have been previously melt-processed successfully in air using a generic Mg-Nd-Ba-Cu-O (Mg-NdBCO) seed crystal. Previous research has revealed that the addition of a small amount of BaO 2 to the precursor powders prior to melt processing can suppress the formation of Gd/Ba solid solution, and lead to a significant improvement in superconducting properties of the single grains. Research into the effects of a higher Ba content on single grain growth, however, has been limited by the relatively small grain size in the earlier studies. This has been addressed by developing Ba-rich precursor compounds Gd-163 and Gd-143, fabricated specifically to enable the presence of greater concentrations of Ba during the melt process. In this study, we propose a new processing route for the fabrication of high performance GdBCO single grain bulk superconductors in air by enriching the precursor powder with these new Ba rich compounds. The influence of the addition of the new compounds on the microstructures and superconducting properties of GdBCO single grains is reported. © 2008 IOP Publishing Ltd.
Resumo:
Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for engineering applications, and research on the processing and properties of this material has attracted interest world-wide over the past 20 years. In particular, the introduction of flux pinning centers to the large grain microstructure to improve its current density Jc, and hence trapped field, has been investigated extensively. Y2Ba 4CuMO2 [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been discovered recently to form very effective flux pinning centers due primarily to its ability to form nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. The addition of Y2O3 to the precursor composition, however, broadens the growth window of single YBCO grains containing Y-2411 (M). We report an investigation of the microstructures and superconducting properties of single grains of this composition grown by top seeded melt growth (TSMG). © 2010 IEEE.