99 resultados para Coherent States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limit order book of an exchange represents an information store of market participants' future aims and for many traders the information held in this store is of interest. However, information loss occurs between orders being entered into the exchange and limit order book data being sent out. We present an online algorithm which carries out Bayesian inference to replace information lost at the level of the exchange server and apply our proof of concept algorithm to real historical data from some of the world's most liquid futures contracts as traded on CME GLOBEX, EUREX and NYSE Liffe exchanges. © 2013 © 2013 Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.