96 resultados para Block-Jacobi matrices


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron and hole conducting 10-nm-wide polymer morphologies hold great promise for organic electro-optical devices such as solar cells and light emitting diodes. The self-assembly of block-copolymers (BCPs) is often viewed as an efficient way to generate such materials. Here, a functional block copolymer that contains perylene bismide (PBI) side chains which can crystallize via π-π stacking to form an electron conducting microphase is patterned harnessing hierarchical electrohydrodynamic lithography (HEHL). HEHL film destabilization creates a hierarchical structure with three distinct length scales: (1) micrometer-sized polymer pillars, containing (2) a 10-nm BCP microphase morphology that is aligned perpendicular to the substrate surface and (3) on a molecular length scale (0.35-3 nm) PBI π-π-stacks traverse the HEHL-generated plugs in a continuous fashion. The good control over BCP and PBI alignment inside the generated vertical microstructures gives rise to liquid-crystal-like optical dichroism of the HEHL patterned films, and improves the electron conductivity across the film by 3 orders of magnitude. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generalization of the geometric mean of positive scalars to positive definite matrices has attracted considerable attention since the seminal work of Ando. The paper generalizes this framework of matrix means by proposing the definition of a rank-preserving mean for two or an arbitrary number of positive semi-definite matrices of fixed rank. The proposed mean is shown to be geometric in that it satisfies all the expected properties of a rank-preserving geometric mean. The work is motivated by operations on low-rank approximations of positive definite matrices in high-dimensional spaces.© 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixedrank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks. © 2011 Gilles Meyer, Silvere Bonnabel and Rodolphe Sepulchre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y Y T leads to a reformulation of the original problem as an optimization on a particular quotient manifold. The present paper discusses the geometry of that manifold and derives a second-order optimization method with guaranteed quadratic convergence. It furthermore provides some conditions on the rank of the factorization to ensure equivalence with the original problem. In contrast to existing methods, the proposed algorithm converges monotonically to the sought solution. Its numerical efficiency is evaluated on two applications: the maximal cut of a graph and the problem of sparse principal component analysis. © 2010 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, scalings, and pseudoinversion). A meaningful approximation of the associated Riemannian distance is proposed, that can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute. © 2009 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study transmission over multiple-antenna blockfading channels with imperfect channel state information at both the transmitter and receiver. Specifically, we investigate achievable rates based on the generalized mutual information. We then analyze the corresponding outage probability in the high signal-to-noise ratio regime. © 2013 IEEE.