130 resultados para Admittance spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonant tunnelling spectroscopy is used to investigate the energy level spectrum of a wide potential well in the presence of a large magnetic field oriented at angles θ between 0° and 90° to the normal to the plane of the well. In the tilted field geometry, the current-voltage characteristics exhibit a large number of quasiperiodic resonant peaks even though the classical motion of electrons in the potential well is chaotic. The voltage range and spacing of the resonances both change dramatically with θ. We give a quantitative explanation for this behaviour by considering the classical period of unstable periodic orbits within the chaotic sea of the potential well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YBCO thin films are currently used in several HTS-based electronics applications. The performance of devices, which may include microwave passive components (filters, resonators), grain boundary junctions or spintronic multilayer structures, is determined by film quality, which in turn depends on the deposition technology used and growth parameters. We report on results from nonintrusive Optical Emission Spectroscopy of the plasma during YBCO thin film deposition in a high-pressure on-axis sputtering system under different conditions, including small trace gas additions to the sputtering gas. We correlate these results with the compositional and structural changes which affect the DC and microwave properties of YBCO films. Film morphology, composition, structure and in- and out-of-plane orientation were assessed; T, and microwave surface resistance measurements were made using inductive and resonator techniques. Comparison was made with films sputtered in an off-axis 2-opposing magnetron system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terahertz time-domain spectroscopy measurements were made for vertically aligned multi-walled carbon nanotube (VACNT) films. We obtained the frequency dependent complex permittivity and conductivity (on the assumption that permeability μ = 1) of several samples exhibiting Drude behaviour for lossy metals. The obtained material properties of VACNT films provide information for potential microwave and terahertz applications. © 2011 Elsevier Ltd. All rights reserved.