97 resultados para Absorption spectrum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helmholtz resonators are commonly used as absorbers of incident acoustic power. Theoretical and experimental investigations have been performed in the four cases of no mean flow, grazing mean flow, bias mean flow and a combination of grazing and bias mean flows. In the absence of a mean flow, the absorption coefficient (deflned as the proportion of incident energy absorbed) is a non-linear function of the acoustic pressure and high incident acoustic pressures are required before the absorption becomes signiflcant. In contrast, when there is a mean flow present, either grazing or bias, the absorption is linear and thus absorption coefficient is independent of the magnitude of the acoustic pressure, and absorption is obtained over a wider range of frequencies. Non-linear effects are only discernible very close to resonance and at very-high amplitude. With grazing mean flow, there is the undesirable effect that sound can be generated over a range of frequencies due to the interaction between the unsteadily shed vorticity waves and the downstream edge of the aperture. This production is not observed when there is a bias flow because here the vorticity is shed all around the rim of the aperture and swept away by the mean flow. When there is both a grazing mean flow and a mean bias flow, we flnd that only a small amount of bias mean flow, compared with grazing mean flow, is required to destroy the production of acoustic energy. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate for the first time coding/decoding for OCDMA networks using electronic transversal filters at 18Gchips/s-a ten-fold improvement over previous demonstrations. The chip rate allows users at Gb/s rates in access applications. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electro-absorption properties and Stark-shift of 1.3μm InGaAs quantum dot waveguide modulators are characterized under reverse bias. 2.5Gb/s data modulation is demonstrated for the first time with clear eye diagrams and error-free back-to-back performance. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7 eV, as directly monitored by in situ Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D' peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a low complexity and reliable wideband spectrum sensing technique that operates at sub-Nyquist sampling rates. Unlike the majority of other sub-Nyquist spectrum sensing algorithms that rely on the Compressive Sensing (CS) methodology, the introduced method does not entail solving an optimisation problem. It is characterised by simplicity and low computational complexity without compromising the system performance and yet delivers substantial reductions on the operational sampling rates. The reliability guidelines of the devised non-compressive sensing approach are provided and simulations are presented to illustrate its superior performance. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of ΔEt 0.3 eV and with a density of state distribution as Dt(Et-j)=Dt0exp(-ΔEt/ kT)with Dt0 = 5.02 × 1011 cm-2 eV-1. Such a model is useful for developing simulation tools for circuit design. © 2014 AIP Publishing LLC.