127 resultados para 259903 Industrial Chemistry
Resumo:
Silicon nanoparticles between 2.5 nm and 30 nm in diameter were functionalized by means of photoassisted hydrosilylation reactions in the aerosol phase with terminal alkenes of varying chain length. Using infrared spectroscopy and nuclear magnetic resonance, the chemical composition of the alkyl layer was determined for each combination of particle size and alkyl chain length. The spectroscopic techniques were used to determine that smaller particles functionalized with short chains in the aerosol phase tend to attach to the interior (β) alkenyl carbon atom, whereas particles >10 nm in diameter exhibit attachment primarily with the exterior (α) alkenyl carbon atom, regardless of chain length. © 2011 American Chemical Society.
Resumo:
A parametric study of spark ignition in a uniform monodisperse turbulent spray is performed with complex chemistry three-dimensional Direct Numerical Simulations in order to improve the understanding of the structure of the ignition kernel. The heat produced by the kernel increases with the amount of fuel evaporated inside the spark volume. Moreover, the heat sink by evaporation is initially higher than the heat release and can have a negative effect on ignition. With the sprays investigated, heat release occurs over a large range of mixture fractions, being high within the nominal flammability limits and finite but low below the lean flammability limit. The burning of very lean regions is attributed to the diffusion of heat and species from regions of high heat release, and from the spark, to lean regions. Two modes of spray ignition are reported. With a relatively dilute spray, nominally flammable material exists only near the droplets. Reaction zones are created locally near the droplets and have a non-premixed character. They spread from droplet to droplet through a very lean interdroplet spacing. With a dense spray, the hot spark region is rich due to substantial evaporation but the cold region remains lean. In between, a large surface of flammable material is generated by evaporation. Ignition occurs there and a large reaction zone propagates from the rich burned region to the cold lean region. This flame is wrinkled due to the stratified mixture fraction field and evaporative cooling. In the dilute spray, the reaction front curvature pdf contains high values associated with single droplet combustion, while in the dense spray, the curvature is lower and closer to the curvature associated with gaseous fuel ignition kernels. © 2011 The Combustion Institute.
Resumo:
Industrialists have few example processes they can benchmark against in order to choose a multi-agent development kit. In this paper we present a review of commercial and academic agent tools with the aim of selecting one for developing an intelligent, self-serving asset architecture. In doing so, we map and enhance relevant assessment criteria found in literature. After a preliminary review of 20 multiagent platforms, we examine in further detail those of JADE, JACK and Cougaar. Our findings indicate that Cougaar is well suited for our requirements, showing excellent support for criteria such as scalability, persistence, mobility and lightweightness. © 2010 IEEE.
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The specific recognition between monoclonal antibody (anti-human prostate-specific antigen, anti-hPSA) and its antigen (human prostate-specific antigen, hPSA) has promising applications in prostate cancer diagnostics and other biosensor applications. However, because of steric constraints associated with interfacial packing and molecular orientations, the binding efficiency is often very low. In this study, spectroscopic ellipsometry and neutron reflection have been used to investigate how solution pH, salt concentration and surface chemistry affect antibody adsorption and subsequent antigen binding. The adsorbed amount of antibody was found to vary with pH and the maximum adsorption occurred between pH 5 and 6, close to the isoelectric point of the antibody. By contrast, the highest antigen binding efficiency occurred close to the neutral pH. Increasing the ionic strength reduced antibody adsorbed amount at the silica-water interface but had little effect on antigen binding. Further studies of antibody adsorption on hydrophobic C8 (octyltrimethoxysilane) surface and chemical attachment of antibody on (3-mercaptopropyl)trimethoxysilane/4-maleimidobutyric acid N-hydroxysuccinimide ester-modified surface have also been undertaken. It was found that on all surfaces studied, the antibody predominantly adopted the 'flat on' orientation, and antigen-binding capabilities were comparable. The results indicate that antibody immobilization via appropriate physical adsorption can replace elaborate interfacial molecular engineering involving complex covalent attachments.