151 resultados para vertically vibrated beds
Resumo:
One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free electron character revealed on unaligned bundles is only due to the intertube interactions favored by the tube bending. Neither the presence of bundles nor the existence of structural defects in aligned bundles is able to induce a free-electron like behavior of the photoexcited carriers. This result is also confirmed by the presence of non-linear excitonic effects in the transient response of the aligned bundles. © 2013 Elsevier B.V.
Oxygen carrier dispersion in inert packed beds to improve performance in chemical looping combustion
Resumo:
Various packed beds of copper-based oxygen carriers (CuO on Al2O3) were tested over 100 cycles of low temperature (673K) Chemical Looping Combustion (CLC) with H2 as the fuel gas. The oxygen carriers were uniformly mixed with alumina (Al2O3) in order to investigate the level of separation necessary to prevent agglomeration. It was found that a mass ratio of 1:6 oxygen carrier to alumina gave the best performance in terms of stable, repeating hydrogen breakthrough curves over 100 cycles. In order to quantify the average separation achieved in the mixed packed beds, two sphere-packing models were developed. The hexagonal close-packing model assumed a uniform spherical packing structure, and based the separation calculations on a hypergeometric probability distribution. The more computationally intensive full-scale model used discrete element modelling to simulate random packing arrangements governed by gravity and contact dynamics. Both models predicted that average 'nearest neighbour' particle separation drops to near zero for oxygen carrier mass fractions of x≥0.25. For the packed bed systems studied, agglomeration was observed when the mass fraction of oxygen carrier was above this threshold. © 2013 Elsevier B.V.
Resumo:
In the domain of energy storage, electrochemical capacitors have numerous applications ranging from hybrid vehicles to consumer electronics, with very high power density at the cost of relatively low energy storage. Here, we report an approach that uses vertically aligned carbon nanotube arrays as electrodes in electrochemical capacitors. Different electrolytes were used and multiple parameters of carbon nanotube array were compared: carbon nanotube arrays were shown to be two to three times better than graphite in term of specific capacitance, while the surface functionalization was demonstrated to be a critical factor in both aqueous and nonaqueous solutions to increase the specific capacitance. We found that a maximum energy density of 21 Wh/kg at a power density of 1.1 kW/kg for a hydrophilic electrode, could be easily achieved by using tetraethylammonium tetrafluoroborate in propylene carbonate. These are encouraging results in the path of energy-storage devices with both high energy density and power density, using only carbon-based materials for the electrodes with a very long lifetime, of tens of thousands of cycles. © 2011 IEEE.
Resumo:
We report the first demonstration of continuous-wave operation of a tunable, compact microring laser array based on a vertical-coupling architecture, well suited to larger-scale integration. Wavelength separation tunability from 4.9 to 6.3nm is observed. © 2006 Optical Society of America.
Resumo:
Au nanoparticles stabilized by poly(methyl methacrylate) (PMMA) were used as a catalyst to grow vertically aligned ZnO nanowires (NWs). The density of ZnO NWs with very uniform diameter was controlled by changing the concentration of Au-PMMA nanoparticles (NPs). The density was in direct proportion to the concentration of Au-PMMA NPs. Furthermore, the growth process of ZnO NWs using Au-PMMA NPs was systematically investigated through comparison with that using Au thin film as a catalyst. Au-PMMA NPs induced polyhedral-shaped bases of ZnO NWs separated from each other, while Au thin film formed a continuous network of bases of ZnO NWs. This approach provides a facile and cost-effective catalyst density control method, allowing us to grow high-quality vertically aligned ZnO NWs suitable for many viable applications.
Resumo:
Vertically aligned carbon nanotubes were grown at temperatures as low as 120degreesC by plasma-enhanced chemical vapor deposition. A systematic study of the temperature dependence of the growth rate and the structure of the as-grown nanotubes is presented using a C2H2/NH3 system and nickel as the catalyst. The activation energy for the growth rate was found to be 0.23 eV, much less than for thermal chemical vapor deposition (1.2-1.5 eV). This suggests growth occurs by surface diffusion of carbon on nickel. The result could allow direct growth of nanotubes onto low-temperature substrates like plastics, and facilitate the integration in sensitive nanoelectronic devices. (C) 2003 American Institute of Physics.
Resumo:
Vertically aligned carbon nanotubes were synthesized by plasma enhanced chemical vapor deposition using nickel as a metal catalyst. High resolution transmission electron microscopy analysis of the particle found at the tip of the tubes reveals the presence of a metastable carbide Ni3C. Since the carbide is found to decompose upon annealing at 600 degreesC, we suggest that Ni3C is formed after the growth is stopped due to the rapid cooling of the Ni-C interstitial solid solution. A detailed description of the tip growth mechanism is given, that accounts for the composite structure of the tube walls. The shape and size of the catalytic particle determine the concentration gradient that drives the diffusion of C atoms across and though the metal. (C) 2004 American Institute of Physics.
Resumo:
A new liquid crystal device structure has been developed using a vertically grown Multi-Wall Carbon NanoTube (MWCNT) as a 3D electrode structure, which allows complicated phase only hologram to be displayed using conventional liquid crystal materials. The nanotubes act as an individual electrode sites that generate an electric field profile, dictating the refractive index profile with the liquid crystal cell. Changing the electric field applied makes it possible to tune the properties to modulate the light in an ideal kinoform. A perfect 3D image can be generated by a computer generated hologram by using the diffraction of the light from the hologram pixels to create an optical wave front that appears to come from 3D object. A multilevel phase modulating device based on nematic LC's is also under progress, which will be used with the LC/CNT devices on an LCOS backplane to project a full 3D image from the kinoform.
Resumo:
The objective of this study was to compare the life-cycle environmental impacts of changed production structures for two consumer goods (high-density polyethylene (HDPE) shopping bags and beds) in Jamaica. A scenario technique was used to construct three alternative production structures for each product; each scenario reflecting an increase in local production in Jamaica which depended on an increased supply of input materials which may be sourced: (1) externally from overseas suppliers, (2) from post-consumer recycling, and (3) locally on the island of Jamaica. These three constructed scenarios were then compared to the existing supply chain or reference scenarios of the products. The results showed that for both case products the recycling scenario was most preferable for localising production, resulting in the lowest environmental impact. This was because the production of raw materials accounted for the largest effect on total environmental impact. As such, the most immediate environmental improvements were realised by lowering the production of virgin materials. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Plasma Enhanced Chemical Vapour Deposition is an extremely versatile technique for directly growing multiwalled carbon nanotubes onto various substrates. We will demonstrate the deposition of vertically aligned nanotube arrays, sparsely or densely populated nanotube forests, and precisely patterned arrays of nanotubes. The high-aspect ratio nanotubes (∼50 nm in diameter and 5 microns long) produced are metallic in nature and direct contact electrical measurements reveal that each nanotube has a current carrying capacity of 107-108 A/cm2, making them excellent candidates as field emission sources. We examined the field emission characteristics of dense nanotube forests as well as sparse nanotube forests and found that the sparse forests had significantly lower turn-on fields and higher emission currents. This is due to a reduction in the field enhancement of the nanotubes due to electric field shielding from adjacent nanotubes in the dense nanotube arrays. We thus fabricated a uniform array of single nanotubes to attempt to overcome these issues and will present the field emission characteristics of this.
Resumo:
Plasma enhanced chemical vapour deposition (PECVD) is a controlled technique for the production of vertically aligned multiwall carbon nanotubes for field emission applications. In this paper, we investigate the electrical properties of individual carbon nanotubes which is important for designing field emission devices. PECVD nanotubes exhibit a room temperature resistance of 1-10 kΩ/μm length (resistivity 10-6 to 10-5 Ω m) and have a maximum current carrying capability of 0.2-2 mA (current density 107-108 A/cm2). The field emission characteristics show that the field enhancement of the structures is strongly related to the geometry (height/radius) of the structures and maximum emission currents of ∼ 10 μA were obtained. The failure of nanotubes under field emission is also discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We report on the fabrication and field emission of carbon nanotube lateral field emitters. Due to its high aspect ratio and mechanical strength, we use vertically aligned multi-wall carbon nanotubes prepared by plasma-enhanced chemical vapour deposition as cathodes, which makes the fabrication of cantilever type lateral field emitters possible. The emission characteristics show that the field emission initiates at 11-17 V. The device has high geometrical enhancement factors (9.3 × 106 cm-1) compared to standard Spindt tips, which may be due to increased field concentration at the nanotube tip and the close proximity of the anode (<1 μm). The relative ease of fabrication compared to vertical field emitters and enhanced field emission characteristics observed makes the carbon nanotube lateral field emitter a good candidate for future integrated nano-electronic devices.
Resumo:
Cold cathodes based on carbon nanotubes (CNs) allow to produce a pulsed/directly modulated electron beam. Using an array of vertically aligned CNs that exhibit an aspect ratio of around 200, we demonstrated the modulation of a 1.5 A/cm2 beam at 1.5 GHz frequency. Such CN cathodes are very promising for their use in a new generation of compact and low cost microwave amplifiers that operates between 30 and 100 GHz. ©2005 IEEE.