107 resultados para teaching enhancement
Resumo:
To overcome reduced breakdown voltage and self-heating effects inherent in silicon-on-insulator (SOI) power integrated circuits while still maintaining good isolation between low power CMOS circuits and the high power cells, partial SOI (PSOI) technology has been proposed. PSOI devices make use of both buried oxide and substrate depletion to support the breakdown voltage. 2D analyses and modeling of parasitic capacitances in PSOI structures show that PSOI-lightly doped MOSFETs can increase the switching speed by as much as four times compared to conventional SOI structures, making them very attractive for high switching applications.
Resumo:
The nonlinear filtering of a 10Gb/s data stream in a dispersion-imbalanced fibre loop mirror has been demonstrated over a wide spectral range of 28nm. A relative extinction ratio of - 30 dB for the cw background has been achieved across the whole spectral range.
Resumo:
From the wide spectrum of potential applications of graphene, ranging from transistors and chemical sensors to nanoelectromechanical devices and composites, the field of photonics and optoelectronics is believed to be one of the most promising. Indeed, graphene's suitability for high-speed photodetection was demonstrated in an optical communication link operating at 10 Gbit s 1. However, the low responsivity of graphene-based photodetectors compared with traditional III-V-based ones is a potential drawback. Here we show that, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors can be increased by up to 20 times, because of efficient field concentration in the area of a p-n junction. Additionally, wavelength and polarization selectivity can be achieved by employing nanostructures of different geometries. © 2011 Macmillan Publishers Limited. All rights reserved.
Guided propagation of surface acoustic waves and piezoelectric field enhancement in ZnO/GaAs systems
Resumo:
The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.
Resumo:
A key issue in the fabrication of Terfenol-D 2-2 composites with internal magnetic field biasing is the selection of appropriate constituent materials to obtain high magnetostriction while keeping optimum magnetomechanical properties. The fabrication process is costly and time consuming and, therefore, numerical methods to predict their properties are useful. In this paper, finite element analysis (FEA) of the magnetostriction of such composites has been carried out using the commercial package ABAQUS. It has been shown that composites fabricated using Nd2Fe14B for the permanent magnetic material layers possess the highest internal fields within the Terfenol-D layers, although the overall strain of these composites is limited to approximately 800 × 10-6 due to the high elastic modulus of Nd2Fe14B. Simulations showed that the strain can be enhanced by choosing a different material with a lower elastic modulus for the permanent magnetic layer even though the internal field is lower. The simulations showed that the strain can increase by 12% if the Nd 2Fe14B layer is substituted by SmCo5; by 23% if it is substituted by Sm2Co17; and by 35% if it is substituted by Alnico. © 2008 IEEE.
Resumo:
This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.
Resumo:
This paper concerns the optimisation of casing grooves and the important influence of stall inception mechanism on groove performance. Installing casing grooves is a well known technique for improving the stable operating range of a compressor, but the wide-spread use of grooves is restricted by the loss of efficiency and flow capacity. In this paper, laboratory tests are used to examine the conditions under which casing treatment can be used to greatest effect. The use of a single casing groove was investigated in a recently published companion paper. The current work extends this to multiple-groove treatments and considers their performance in relation to stall inception mechanisms. Here it is shown that the stall margin gain from multiple grooves is less than the sum of the gains if the grooves were used individually. By contrast, the loss of efficiency is additive as the number of grooves increases. It is then shown that casing grooves give the greatest stall margin improvement when used in a compressor which exhibits spike-type stall inception, while modal activity before stall can dramatically reduce the effectiveness of the grooves. This finding highlights the importance of being able to predict the stall inception mechanism which might occur in a given compressor before and after grooves are added. Some published prediction techniques are therefore examined, but found wanting. Lastly, it is shown that casing grooves can, in some cases, be used to remove rotor blades and produce a more efficient, stable and light-weight rotor. © 2010 by ASME.
Resumo:
Physical modelling of interesting geotechnical problems has helped clarify behaviours and failure mechanisms of many civil engineering systems. Interesting visual information from physical modelling can also be used in teaching to foster interest in geotechnical engineering and recruit young researchers to our field. With this intention, the Teaching Committee of TC2 developed a web-based teaching resources centre. In this paper, the development and organisation of the resource centre using Wordpress. Wordpress is an open-source content management system which allows user content to be edited and site administration to be controlled remotely via a built-in interface. Example data from a centrifuge test on shallow foundations which could be used for undergraduate or graduate level courses is presented and its use illustrated. A discussion on the development of wiki-style addition to the resource centre for commonly used physical model terms is also presented. © 2010 Taylor & Francis Group, London.