86 resultados para sound recordings


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-point spatial correlation of the rate of change of fluctuating heat release rate is central to the sound emission from open turbulent flames, and a few attempts have been made to address this correlation in recent studies. In this paper, the two-point correlation and its role in combustion noise are studied by analysing direct numerical simulation (DNS) data of statistically multi-dimensional turbulent premixed flames. The results suggest that this correlation function depends on the separation distance and direction but, not on the positions inside the flame brush. This correlation can be modelled using a combination of Hermite-Gaussian functions of zero and second order, i.e. functions of the form (1-Ax2)e-Bx2 for constants A and B, to include its possible negative values. The integral correlation volume obtained using this model is about 0.2δL3 with the length scale obtained from its cube root being about 0.6δ L, where δ L is the laminar flame thermal thickness. Both of the values are slightly larger than the values reported in an earlier study because of the anisotropy observed for the correlation. This model together with the turbulence-dependent parameter K, the ratio of the root-mean-square (RMS) value of the rate of change of reaction rate to the mean reaction rate, derived from the DNS data is applied to predict the far-field sound emitted from open flames. The calculated noise levels agree well with recently reported measurements and show a sensitivity to K values. © 2012 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic communication in drosophilid flies is based on the production and perception of courtship songs, which facilitate mating. Despite decades of research on courtship songs and behavior in Drosophila, central auditory responses have remained uncharacterized. In this study, we report on intracellular recordings from central neurons that innervate the Drosophila antennal mechanosensory and motor center (AMMC), the first relay for auditory information in the fly brain. These neurons produce graded-potential (nonspiking) responses to sound; we compare recordings from AMMC neurons to extracellular recordings of the receptor neuron population [Johnston's organ neurons (JONs)]. We discover that, while steady-state response profiles for tonal and broadband stimuli are significantly transformed between the JON population in the antenna and AMMC neurons in the brain, transient responses to pulses present in natural stimuli (courtship song) are not. For pulse stimuli in particular, AMMC neurons simply low-pass filter the receptor population response, thus preserving low-frequency temporal features (such as the spacing of song pulses) for analysis by postsynaptic neurons. We also compare responses in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans, and find that pulse song responses are largely similar, despite differences in the spectral content of their songs. Our recordings inform how downstream circuits may read out behaviorally relevant information from central neurons in the AMMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study is presented showing the structural response and sound radiation from a range of thin shell structures excited by a point force: a baffled flat plate, a sphere, a family of spheroids and a family of closed circular cylinders. All the structures have the same material properties, thickness and total surface area so the asymptotic modal density is the same. Dramatic differences are shown in the total radiated sound power for the different shells. It was already known that the flat plate and the sphere behave very differently. These results show that the cylinders and, particularly, the spheroids show patterns that are not intermediate between the two but instead display new features: in certain frequency ranges the radiated sound power can be at least an order of magnitude greater than either the plate or the sphere. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The International Organization for Standardization (ISO) method 5136 is widely used in industry and academia to determine the sound power radiated into a duct by fans and other flow devices. The method involves placing the device at the center of a long cylindrical duct with anechoic terminations at each end to eliminate reflections. A single off-axis microphone is used on the inlet and outlet sides that can theoretically capture the plane-wave mode amplitudes but this does not provide enough information to fully account for higher-order modes. In this study, the "two-port" source model is formulated to include higher-order modes and applied for the first three modes. This requires six independent surface pressure measurements on each side or "port." The resulting experimental set-up is much shorter than the ISO rig and does not require anechoic terminations. An array of six external loudspeaker sources is used to characterize the passive part of the two-port model and the set-up provides a framework to account for transmission of higher-order modes through a fan. The relative importance of the higher-order modes has been considered and their effect on inaccuracies when using the ISO method to find source sound power has been analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helmholtz resonators are commonly used as absorbers of incident acoustic power. Theoretical and experimental investigations have been performed in the four cases of no mean flow, grazing mean flow, bias mean flow and a combination of grazing and bias mean flows. In the absence of a mean flow, the absorption coefficient (deflned as the proportion of incident energy absorbed) is a non-linear function of the acoustic pressure and high incident acoustic pressures are required before the absorption becomes signiflcant. In contrast, when there is a mean flow present, either grazing or bias, the absorption is linear and thus absorption coefficient is independent of the magnitude of the acoustic pressure, and absorption is obtained over a wider range of frequencies. Non-linear effects are only discernible very close to resonance and at very-high amplitude. With grazing mean flow, there is the undesirable effect that sound can be generated over a range of frequencies due to the interaction between the unsteadily shed vorticity waves and the downstream edge of the aperture. This production is not observed when there is a bias flow because here the vorticity is shed all around the rim of the aperture and swept away by the mean flow. When there is both a grazing mean flow and a mean bias flow, we flnd that only a small amount of bias mean flow, compared with grazing mean flow, is required to destroy the production of acoustic energy. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.