90 resultados para simulated annealing (SA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An existing driver-vehicle model with neuromuscular dynamics is improved in the areas of cognitive delay, intrinsic muscle dynamics and alpha-gamma co-activation. The model is used to investigate the influence of steering torque feedback and neuromuscular dynamics on the vehicle response to lateral force disturbances. When steering torque feedback is present, it is found that the longitudinal position of the lateral disturbance has a significant influence on whether the drivers reflex response reinforces or attenuates the effect of the disturbance. The response to angle and torque overlay inputs to the steering system is also investigated. The presence of the steering torque feedback reduced the disturbing effect of torque overlay and angle overlay inputs. Reflex action reduced the disturbing effect of a torque overlay input, but increased the disturbing effect of an angle overlay input. Experiments on a driving simulator showed that measured handwheel angle response to an angle overlay input was consistent with the response predicted by the model with reflex action. However, there was significant intra-and inter-subject variability. The results highlight the significance of a drivers neuromuscular dynamics in determining the vehicle response to disturbances. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69μm unsteered, 3.70μm steered; elevational precision 38.67μm unsteered, 3.64μm steered. Similar results were found in the phantom data: lateral precision 26.51μm unsteered, 5.78μm steered; elevational precision 28.92μm unsteered, 11.87μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most quasi-static ultrasound elastography methods image only the axial strain, derived from displacements measured in the direction of ultrasound propagation. In other directions, the beam lacks high resolution phase information and displacement estimation is therefore less precise. However, these estimates can be improved by steering the ultrasound beam through multiple angles and combining displacements measured along the different beam directions. Previously, beamsteering has only considered the 2D case to improve the lateral displacement estimates. In this paper, we extend this to 3D using a simulated 2D array to steer both laterally and elevationally in order to estimate the full 3D displacement vector over a volume. The method is tested on simulated and phantom data using a simulated 6-10 MHz array, and the precision of displacement estimation is measured with and without beamsteering. In simulations, we found a statistically significant improvement in the precision of lateral and elevational displacement estimates: lateral precision 35.69 μm unsteered, 3.70 μm steered; elevational precision 38.67 μm unsteered, 3.64 μm steered. Similar results were found in the phantom data: lateral precision 26.51 μm unsteered, 5.78 μm steered; elevational precision 28.92 μm unsteered, 11.87 μm steered. We conclude that volumetric 3D beamsteering improves the precision of lateral and elevational displacement estimates. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples. © 2013 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sidewall facets of GaAs nanowires (NWs) were studied. It has been found that the sidewalls of GaAs NWs grown at 450 °C are {112} facets. However, the sidewalls of GaAs NWs start to become {110} during the postannealing at 650 °C for 30 min. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results are presented of systematic studies of vibration damping in steel of a type, and processed by a route, rel-evant to Caribbean steel pans. Damping is likely to be a significant factor in the variation of sound quality be-tween different pans. The main stages in pan manufac-ture are simulated in a controlled manner using sheet steel, cold-rolled to a prescribed level of thickness reduc-tion then annealed at a chosen temperature in a laboratory furnace. Small test strips were cut from the resulting material, and tested in free-free beam bending to deduce the Young’s modulus and its associated loss factor. It is shown that the steel type, the degree of cold working and the annealing temperature all have a significant influence on damping. Furthermore, for each individual specimen damping is found to decrease with rising frequency, ap-proximately following a power law. Comparison with samples cut from a real pan show that there are further influences from the pan’s geometrical details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible-far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The achievement of the desirable morphology at the nanometer scale of bulk heterojunctions consisting of a conjugated polymer with fullerene derivatives is a prerequisite in order to optimize the power conversion efficiency of organic solar cells. The various experimental conditions such as the choice of solvent, drying rates and annealing have been found to significantly affect the blend morphology and the final performance of the photovoltaic device. In this work, we focus on the effects of post deposition thermal annealing at 140 °C on the blend morphology, the optical and structural properties of bulk heterojunctions that consist of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM). The post thermal annealing modifies the distribution of the P3HT and the PCBM inside the blend films, as it has been found by Spectroscopic Ellipsometry studies in the visible to far-ultraviolet spectral range. Phase separation was identified by AFM and GIXRD as a result of a slow drying process which took place after the spin coating process. The increase of the annealing time resulted to a significant increase of the P3HT crystallinity at the top regions of the blend films. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured polymer-fullerene thin films are among the most prominent materials for application in high efficient polymer solar cells. Specifically, poly(3-hexylthiophene) (P3HT) and fullerene derivatives (PCBM) blends are used as the donor/acceptor materials forming a bulk heterojunction. Although P3HT:PCBM properties have been extensively studied, less light has been set on its nanomechanical properties, which affect the device service life. In this work Atomic Force Acoustic Microscopy (AFAM), Atomic Force Spectroscopy and Nanoindentation were used to study the effect of the fullerene presence and the annealing on the P3HT:PCBM nanomechanical behavior. The P3HT:PCBM thin films were prepared by spin coating on glass substrates and then annealed at 100 °C and 145 °C for 30 min. Large phase separation was identified by optical and Atomic Force Microscopy (AFM) for the annealed samples. Needle-like PCBM crystals were formed and an increase of the polymer crystallinity degree with the increase of the annealing temperature was confirmed by X-ray diffraction. AFAM characterization revealed the presence of aggregates close to stiff PCBM crystals, possibly consisting of amorphous P3HT material. AFM force-distance curves showed a continuous change in stiffness in the vicinity of the PCBM crystals, due to the PCBM depletion near its crystals, and the AFM indentation provided qualitative results about the changes in P3HT nanomechanical response after annealing. © 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.