86 resultados para quantile function
Resumo:
Concepts of function are central to design but statements about a device's functions can be interpreted in different ways. This raises problems for researchers trying to clarify the foundations of design theory and for those developing design support-tools that can represent and reason about function. By showing how functions relate systems to their sub-systems and super-systems, this article illustrates some limitations of existing function terminology and some problems with existing function statements. To address these issues, a system-relative function terminology is introduced. This is used to demonstrate that systems function not only with respect to their most local super-system, but also with respect to their more global super-systems. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Networks of controlled dynamical systems exhibit a variety of interconnection patterns that could be interpreted as the structure of the system. One such interpretation of system structure is a system's signal structure, characterized as the open-loop causal dependencies among manifest variables and represented by its dynamical structure function. Although this notion of structure is among the weakest available, previous work has shown that if no a priori structural information is known about the system, not even the Boolean structure of the dynamical structure function is identifiable. Consequently, one method previously suggested for obtaining the necessary a priori structural information is to leverage knowledge about target specificity of the controlled inputs. This work extends these results to demonstrate precisely the a priori structural information that is both necessary and sufficient to reconstruct the network from input-output data. This extension is important because it significantly broadens the applicability of the identifiability conditions, enabling the design of network reconstruction experiments that were previously impossible due to practical constraints on the types of actuation mechanisms available to the engineer or scientist. The work is motivated by the proteomics problem of reconstructing the Per-Arnt-Sim Kinase pathway used in the metabolism of sugars. © 2012 IEEE.
Resumo:
Quantile regression refers to the process of estimating the quantiles of a conditional distribution and has many important applications within econometrics and data mining, among other domains. In this paper, we show how to estimate these conditional quantile functions within a Bayes risk minimization framework using a Gaussian process prior. The resulting non-parametric probabilistic model is easy to implement and allows non-crossing quantile functions to be enforced. Moreover, it can directly be used in combination with tools and extensions of standard Gaussian Processes such as principled hyperparameter estimation, sparsification, and quantile regression with input-dependent noise rates. No existing approach enjoys all of these desirable properties. Experiments on benchmark datasets show that our method is competitive with state-of-the-art approaches. © 2009 IEEE.
Resumo:
Reward processing is linked to specific neuromodulatory systems with a dopaminergic contribution to reward learning and motivational drive being well established. Neuromodulatory influences on hedonic responses to actual receipt of reward, or punishment, referred to as experienced utility are less well characterized, although a link to the endogenous opioid system is suggested. Here, in a combined functional magnetic resonance imaging-psychopharmacological investigation, we used naloxone to block central opioid function while subjects performed a gambling task associated with rewards and losses of different magnitudes, in which the mean expected value was always zero. A graded influence of naloxone on reward outcome was evident in an attenuation of pleasure ratings for larger reward outcomes, an effect mirrored in attenuation of brain activity to increasing reward magnitude in rostral anterior cingulate cortex. A more striking effect was seen for losses such that under naloxone all levels of negative outcome were rated as more unpleasant. This hedonic effect was associated with enhanced activity in anterior insula and caudal anterior cingulate cortex, areas implicated in aversive processing. Our data indicate that a central opioid system contributes to both reward and loss processing in humans and directly modulates the hedonic experience of outcomes.
Resumo:
In any thermoacoustic analysis, it is important not only to predict linear frequencies and growth rates, but also the amplitude and frequencies of any limit cycles. The Flame Describing Function (FDF) approach is a quasi-linear analysis which allows the prediction of both the linear and nonlinear behaviour of a thermoacoustic system. This means that one can predict linear growth rates and frequencies, and also the amplitudes and frequencies of any limit cycles. The FDF achieves this by assuming that the acoustics are linear and that the flame, which is the only nonlinear element in the thermoacoustic system, can be adequately described by considering only its response at the frequency at which it is forced. Therefore any harmonics generated by the flame's nonlinear response are not considered. This implies that these nonlinear harmonics are small or that they are sufficiently filtered out by the linear dynamics of the system (the low-pass filter assumption). In this paper, a flame model with a simple saturation nonlinearity is coupled to simple duct acoustics, and the success of the FDF in predicting limit cycles is studied over a range of flame positions and acoustic damping parameters. Although these two parameters affect only the linear acoustics and not the nonlinear flame dynamics, they determine the validity of the low-pass filter assumption made in applying the flame describing function approach. Their importance is highlighted by studying the level of success of an FDF-based analysis as they are varied. This is achieved by comparing the FDF's prediction of limit-cycle amplitudes to the amplitudes seen in time domain simulations.
Resumo:
While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.
Resumo:
This work applies a variety of multilinear function factorisation techniques to extract appropriate features or attributes from high dimensional multivariate time series for classification. Recently, a great deal of work has centred around designing time series classifiers using more and more complex feature extraction and machine learning schemes. This paper argues that complex learners and domain specific feature extraction schemes of this type are not necessarily needed for time series classification, as excellent classification results can be obtained by simply applying a number of existing matrix factorisation or linear projection techniques, which are simple and computationally inexpensive. We highlight this using a geometric separability measure and classification accuracies obtained though experiments on four different high dimensional multivariate time series datasets. © 2013 IEEE.
Resumo:
We demonstrate a new type of transistors, the electrical/optical "dual-function redox-potential transistors", which is solution processable and environmentally stable. This device consists of vertically staked electrodes that act as gate, emitter and collector. It can perform as a normal transistor, whilst one electrode which is sensitised by dye enables to generate photocurrent when illuminated. Solution processable oxide-nanoparticles were used to form various functional layers, which allow an electrolyte to penetrate through and, consequently, the current between emitter and collector can be controlled by the gate potential modulated distribution of ions. The result here shows that the device performs with high ON-current under low driving voltage (<1â€...V), while the transistor performance can readily be controlled by photo-illumination. Such device with combined optical and electrical functionalities allows single device to perform the tasks that are usually done by a circuit/system with multiple optical and electrical components, and it is promising for various applications.
Resumo:
Structured Light Plethysmography (SLP) is a novel non-invasive method that uses structured light to perform pulmonary function testing that does not require physical contact with a patient. The technique produces an estimate of chest wall volume changes over time. A patient is observed continuously by two cameras and a known pattern of light (i.e. structured light) is projected onto the chest using an off-the-shelf projector. Corner features from the projected light pattern are extracted, tracked and brought into correspondence for both camera views over successive frames. A novel self calibration algorithm recovers the intrinsic and extrinsic camera parameters from these point correspondences. This information is used to reconstruct a surface approximation of the chest wall and several novel ideas for 'cleaning up' the reconstruction are used. The resulting volume and derived statistics (e.g. FVC, FEV) agree very well with data taken with a spirometer. © 2010. The copyright of this document resides with its authors.