90 resultados para online classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new online multi-classifier boosting algorithm for learning object appearance models. In many cases the appearance model is multi-modal, which we capture by training and updating multiple strong classifiers. The proposed algorithm jointly learns the classifiers and a soft partitioning of the input space, defining an area of expertise for each classifier. We show how this formulation improves the specificity of the strong classifiers, allowing simultaneous location and pose estimation in a tracking task. The proposed online scheme iteratively adapts the classifiers during tracking. Experiments show that the algorithm successfully learns multi-modal appearance models during a short initial training phase, subsequently updating them for tracking an object under rapid appearance changes. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. Since word-level semantic annotations are costly, Semantic Tuple Classifiers (STCs) are used in conjunction with statistical machine translation models both of which are trained from unaligned data to further reduce development time. The paper presents experiments in which a French SLU component in the tourist information domain is bootstrapped from English data. Results show that training STCs on automatically translated data produced the best performance for predicting the utterance's dialogue act type, however individual slot/value pairs are best predicted by training STCs on the source language and using them to decode translated utterances. © 2010 ISCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most HMM-based TTS systems use a hard voiced/unvoiced classification to produce a discontinuous F0 signal which is used for the generation of the source-excitation. When a mixed source excitation is used, this decision can be based on two different sources of information: the state-specific MSD-prior of the F0 models, and/or the frame-specific features generated by the aperiodicity model. This paper examines the meaning of these variables in the synthesis process, their interaction, and how they affect the perceived quality of the generated speech The results of several perceptual experiments show that when using mixed excitation, subjects consistently prefer samples with very few or no false unvoiced errors, whereas a reduction in the rate of false voiced errors does not produce any perceptual improvement. This suggests that rather than using any form of hard voiced/unvoiced classification, e.g., the MSD-prior, it is better for synthesis to use a continuous F0 signal and rely on the frame-level soft voiced/unvoiced decision of the aperiodicity model. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life is full of difficult choices. Everyone has their own way of dealing with these, some effective, some not. The problem is particularly acute in engineering design because of the vast amount of information designers have to process. This paper deals with a subset of this set of problems: the subset of selecting materials and processes, and their links to the design of products. Even these, though, present many of the generic problems of choice, and the challenges in creating tools to assist the designer in making them. The key elements are those of classification, of indexing, of reaching decisions using incomplete data in many different formats, and of devising effective strategies for selection. This final element - that of selection strategies - poses particular challenges. Product design, as an example, is an intricate blend of the technical and (for want of a better word) the aesthetic. To meet these needs, a tool that allows selection by analysis, by analogy, by association and simply by 'browsing' is necessary. An example of such a tool, its successes and remaining challenges, will be described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in this paper a new multivariate probabilistic approach to Acoustic Pulse Recognition (APR) for tangible interface applications. This model uses Principle Component Analysis (PCA) in a probabilistic framework to classify tapping pulses with a high degree of variability. It was found that this model, achieves a higher robustness to pulse variability than simpler template matching methods, specifically when allowed to train on data containing high variability. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changepoint models are widely used to model the heterogeneity of sequential data. We present a novel sequential Monte Carlo (SMC) online Expectation-Maximization (EM) algorithm for estimating the static parameters of such models. The SMC online EM algorithm has a cost per time which is linear in the number of particles and could be particularly important when the data is representable as a long sequence of observations, since it drastically reduces the computational requirements for implementation. We present an asymptotic analysis for the stability of the SMC estimates used in the online EM algorithm and demonstrate the performance of this scheme using both simulated and real data originating from DNA analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changepoint models are widely used to model the heterogeneity of sequential data. We present a novel sequential Monte Carlo (SMC) online Expectation-Maximization (EM) algorithm for estimating the static parameters of such models. The SMC online EM algorithm has a cost per time which is linear in the number of particles and could be particularly important when the data is representable as a long sequence of observations, since it drastically reduces the computational requirements for implementation. We present an asymptotic analysis for the stability of the SMC estimates used in the online EM algorithm and demonstrate the performance of this scheme using both simulated and real data originating from DNA analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a method to incorporate linguistic information regarding single-word and compound verbs is proposed, as a first step towards an SMT model based on linguistically-classified phrases. By substituting these verb structures by the base form of the head verb, we achieve a better statistical word alignment performance, and are able to better estimate the translation model and generalize to unseen verb forms during translation. Preliminary experiments for the English - Spanish language pair are performed, and future research lines are detailed. © 2005 Association for Computational Linguistics.