84 resultados para numerical simulations
Resumo:
We demonstrate a nanoscale mode selector supporting the propagation of the first antisymmetric mode of a silicon waveguide. The mode selector is based on embedding a short section of PhC into the waveguide. On the basis of the difference in k-vector distribution between orthogonal waveguide modes, the PhC can be designed to have a band gap for the fundamental mode, while allowing the transmission of the first antisymmetric mode. The device was tested by directly measuring the modal content before and after the PhC section using a near field scanning optical microscope. Extinction ratio was estimated to be approximately 23 dB. Finally, we provide numerical simulations demonstrating strong coupling of the antisymmetric mode to metallic nanotips. On the basis of the results, we believe that the mode selector may become an important building block in the realization of on chip nanofocusing devices.
Resumo:
We experimentally demonstrate nanoscale thermal mapping of light induced heat in photonic and plasmonic devices using a thermocouple AFM tip. Numerical simulations results and nanoscale temperature measurements are presented and discussed. © OSA 2013.
Resumo:
We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide © 2011 OSA.
Resumo:
We investigate the dependency of electrostatic interaction forces on applied potentials in electrostatic force microscopy (EFM) as well as in related local potentiometry techniques such as Kelvin probe microscopy (KPM). The approximated expression of electrostatic interaction between two conductors, usually employed in EFM and KPM, may loose its validity when probe-sample distance is not very small, as often realized when realistic nanostructured systems with complex topography are investigated. In such conditions, electrostatic interaction does not depend solely on the potential difference between probe and sample, but instead it may depend on the bias applied to each conductor. For instance, electrostatic force can change from repulsive to attractive for certain ranges of applied potentials and probe-sample distances, and this fact cannot be accounted for by approximated models. We propose a general capacitance model, even applicable to more than two conductors, considering values of potentials applied to each of the conductors to determine the resulting forces and force gradients, being able to account for the above phenomenon as well as to describe interactions at larger distances. Results from numerical simulations and experiments on metal stripe electrodes and semiconductor nanowires supporting such scenario in typical regimes of EFM investigations are presented, evidencing the importance of a more rigorous modeling for EFM data interpretation. Furthermore, physical meaning of Kelvin potential as used in KPM applications can also be clarified by means of the reported formalism. © 2009 American Institute of Physics.
Resumo:
A 200V lateral insulated gate bipolar transistor (LIGBT) was successfully developed using lateral superjunction (SJ) in 0.18μm partial silicon on insulator (SOI) HV process. The results presented are based on extensive experimental measurements and numerical simulations. For an n-type lateral SJ LIGBT, the p layer in the SJ drift region helps in achieving uniform electric field distribution. Furthermore, the p-pillar contributes to the on-state current. Furthermore, the p-pillar contributes to sweep out holes during the turn-off process, thus leading to faster removal of plasma. To realize this device, one additional mask layer is required in the X-FAB 0.18μm partial SOI HV process. © 2013 IEEE.
Resumo:
We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.
Resumo:
We present a numerical simulations, fabrication and experimental results for on-chip focusing of surface plasmon polaritons (SPPs) in metal nanotip coupled to the silicon waveguide. © 2011 Optical Society of America.
Resumo:
The authors present numerical simulations of ultrashort pulse generation by a technique of linear spectral broadening in phase modulators and compression in dispersion compensating fibre, followed by a further stage of soliton compression in dispersion shifted fibre. This laser system is predicted to generate pulses of 140 fs duration with a peak power of 1.5 kW over a wide, user selectable repetition rate range while maintaining consistent characteristics of stability and pulse quality. The use of fibre compressors and commercially available modulators is expected to make the system setup compact and cost-effective. © The Institution of Engineering and Technology 2014.
Resumo:
This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing. One of the consequences is a greater attention to the risk of damage on existing structures. Thus, the assessment of potential damage of surface buildings has become an essential stage in the excavation projects in urban areas (Chapter 1). The current damage risk assessment procedure is based on strong simplifications, which not always lead to conservative results. Object of this thesis is the development of an improved damage classification system, which takes into account the parameters influencing the structural response to settlement, like the non-linear behaviour of masonry and the soil-structure interaction. The methodology used in this research is based on experimental and numerical modelling. The design and execution of an experimental benchmark test representative of the problem allows to identify the principal factors and mechanisms involved. The numerical simulations enable to generalize the results to a broader range of physical scenarios. The methodological choice is based on a critical review of the currently available procedures for the assessment of settlement-induced building damage (Chapter 2). A new experimental test on a 1/10th masonry façade with a rubber base interface is specifically designed to investigate the effect of soil-structure interaction on the tunnelling-induced damage (Chapter 3). The experimental results are used to validate a 2D semi-coupled finite element model for the simulation of the structural response (Chapter 4). The numerical approach, which includes a continuum cracking model for the masonry and a non-linear interface to simulate the soil-structure interaction, is then used to perform a sensitivity study on the effect of openings, material properties, initial damage, initial conditions, normal and shear behaviour of the base interface and applied settlement profile (Chapter 5). The results assess quantitatively the major role played by the normal stiffness of the soil-structure interaction and by the material parameters defining the quasi-brittle masonry behaviour. The limitation of the 2D modelling approach in simulating the progressive 3D displacement field induced by the excavation and the consequent torsional response of the building are overcome by the development of a 3D coupled model of building, foundation, soil and tunnel (Chapter 6). Following the same method applied to the 2D semi-coupled approach, the 3D model is validated through comparison with the monitoring data of a literature case study. The model is then used to carry out a series of parametric analyses on geometrical factors: the aspect ratio of horizontal building dimensions with respect to the tunnel axis direction, the presence of adjacent structures and the position and alignment of the building with respect to the excavation (Chapter 7). The results show the governing effect of the 3D building response, proving the relevance of 3D modelling. Finally, the results from the 2D and 3D parametric analyses are used to set the framework of an overall damage model which correlates the analysed structural features with the risk for the building of being damaged by a certain settlement (Chapter 8). This research therefore provides an increased experimental and numerical understanding of the building response to excavation-induced settlements, and sets the basis for an operational tool for the risk assessment of structural damage (Chapter 9).