94 resultados para feature representation
Resumo:
It is commonly believed that visual short-term memory (VSTM) consists of a fixed number of "slots" in which items can be stored. An alternative theory in which memory resource is a continuous quantity distributed over all items seems to be refuted by the appearance of guessing in human responses. Here, we introduce a model in which resource is not only continuous but also variable across items and trials, causing random fluctuations in encoding precision. We tested this model against previous models using two VSTM paradigms and two feature dimensions. Our model accurately accounts for all aspects of the data, including apparent guessing, and outperforms slot models in formal model comparison. At the neural level, variability in precision might correspond to variability in neural population gain and doubly stochastic stimulus representation. Our results suggest that VSTM resource is continuous and variable rather than discrete and fixed and might explain why subjective experience of VSTM is not all or none.
Resumo:
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.
Resumo:
The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as an heuristic by which to extract semantic information from multi-dimensional time-series. Here, we develop a probabilistic interpretation of this algorithm showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual spring-board, with which to motivate several novel extensions to the algorithm.
Resumo:
The past decade has seen a rise of interest in Laplacian eigenmaps (LEMs) for nonlinear dimensionality reduction. LEMs have been used in spectral clustering, in semisupervised learning, and for providing efficient state representations for reinforcement learning. Here, we show that LEMs are closely related to slow feature analysis (SFA), a biologically inspired, unsupervised learning algorithm originally designed for learning invariant visual representations. We show that SFA can be interpreted as a function approximation of LEMs, where the topological neighborhoods required for LEMs are implicitly defined by the temporal structure of the data. Based on this relation, we propose a generalization of SFA to arbitrary neighborhood relations and demonstrate its applicability for spectral clustering. Finally, we review previous work with the goal of providing a unifying view on SFA and LEMs. © 2011 Massachusetts Institute of Technology.
Resumo:
We develop a group-theoretical analysis of slow feature analysis for the case where the input data are generated by applying a set of continuous transformations to static templates. As an application of the theory, we analytically derive nonlinear visual receptive fields and show that their optimal stimuli, as well as the orientation and frequency tuning, are in good agreement with previous simulations of complex cells in primary visual cortex (Berkes and Wiskott, 2005). The theory suggests that side and end stopping can be interpreted as a weak breaking of translation invariance. Direction selectivity is also discussed. © 2011 Massachusetts Institute of Technology.
Resumo:
We present a model for the self-organized formation of place cells, head-direction cells, and spatial-view cells in the hippocampal formation based on unsupervised learning on quasi-natural visual stimuli. The model comprises a hierarchy of Slow Feature Analysis (SFA) nodes, which were recently shown to reproduce many properties of complex cells in the early visual system []. The system extracts a distributed grid-like representation of position and orientation, which is transcoded into a localized place-field, head-direction, or view representation, by sparse coding. The type of cells that develops depends solely on the relevant input statistics, i.e., the movement pattern of the simulated animal. The numerical simulations are complemented by a mathematical analysis that allows us to accurately predict the output of the top SFA layer.
Resumo:
Water is essential not only to maintain the livelihoods of human beings but also to sustain ecosystems. Over the last few decades several global assessments have reviewed current and future uses of water, and have offered potential solutions to a possible water crisis. However, these have tended to focus on water supply rather than on the range of demands for all water services (including those of ecosystems). In this paper, a holistic global view of water resources and the services they provide is presented, using Sankey diagrams as a visualisation tool. These diagrams provide a valuable addition to the spatial maps of other global assessments, as they track the sources, uses, services and sinks of water resources. They facilitate comparison of different water services, and highlight trade-offs amongst them. For example, they reveal how increasing the supply of water resources to one service (crop production) can generate a reduction in provision of other water services (e.g., to ecosystem maintenance). The potential impacts of efficiency improvements in the use of water are also highlighted; for example, reduction in soil evaporation from crop production through better farming practices, or the results of improved treatment and re-use of return flows leading to reduction of delivery to final sinks. This paper also outlines the measures needed to ensure sustainable water resource use and supply for multiple competing services in the future, and emphasises that integrated management of land and water resources is essential to achieve this goal. © 2013 Elsevier Ltd.
Resumo:
We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbourhood structure of the data in a sense that objects in the same semantic concept have similar latent values, and objects in different concepts have dissimilar latent values. We formulate the supervised infinite latent variable problem based on an intuitive principle of pulling objects together if they are of the same type, and pushing them apart if they are not. We then combine this principle with a flexible Indian Buffet Process prior on the latent variables. We show that the inferred supervised latent variables can be directly used to perform a nearest neighbour search for the purpose of retrieval. We introduce a new application of dynamically extending hash codes, and show how to effectively couple the structure of the hash codes with continuously growing structure of the neighbourhood preserving infinite latent feature space.
Generalized Spike-and-Slab Priors for Bayesian Group Feature Selection Using Expectation Propagation
Resumo:
This work applies a variety of multilinear function factorisation techniques to extract appropriate features or attributes from high dimensional multivariate time series for classification. Recently, a great deal of work has centred around designing time series classifiers using more and more complex feature extraction and machine learning schemes. This paper argues that complex learners and domain specific feature extraction schemes of this type are not necessarily needed for time series classification, as excellent classification results can be obtained by simply applying a number of existing matrix factorisation or linear projection techniques, which are simple and computationally inexpensive. We highlight this using a geometric separability measure and classification accuracies obtained though experiments on four different high dimensional multivariate time series datasets. © 2013 IEEE.
Resumo:
Adaptation to speaker and environment changes is an essential part of current automatic speech recognition (ASR) systems. In recent years the use of multi-layer percpetrons (MLPs) has become increasingly common in ASR systems. A standard approach to handling speaker differences when using MLPs is to apply a global speaker-specific constrained MLLR (CMLLR) transform to the features prior to training or using the MLP. This paper considers the situation when there are both speaker and channel, communication link, differences in the data. A more powerful transform, front-end CMLLR (FE-CMLLR), is applied to the inputs to the MLP to represent the channel differences. Though global, these FE-CMLLR transforms vary from time-instance to time-instance. Experiments on a channel distorted dialect Arabic conversational speech recognition task indicates the usefulness of adapting MLP features using both CMLLR and FE-CMLLR transforms. © 2013 IEEE.