80 resultados para catalizzatori steam reforming ossidazione parziale catalitica
Resumo:
Our group recently reproduced the water-assisted growth method, so-called "SuperGrowth", of millimeter-thick single-walled carbon nanotube (SWNT) forests by using C2H4/H2/H2O/Ar reactant gas and Fe/Al2O3, catalyst. In this current work, a parametric study was carried out on both reaction and catalyst conditions. Results revealed that a thin Fe catalyst layer (about 0.5 nm) yielded rapid growth of SWNTs only when supported on Al2O3, and that Al2O3 support enhanced the activity of Fe, Co, and Ni catalysts. The growth window for the rapid SWNT growth was narrow, however. Optimum amount of added H2O increased the SWNT growth rate but further addition of H2O degraded both the SWNT growth rate and quality. Addition of H2 was also essential for rapid SWNT growth, but again, further addition decreased both the SWNT growth rate and quality. Because Al2O3 catalyzes hydrocarbon reforming, Al2O3 support possibly enhances the SWNT growth rate by supplying the carbon source to the catalyst nanoparticles. The origin of the narrow window for rapid SWNT growth is also discussed.
Resumo:
In this paper, a synthetic mixture of ZrO2 and Fe 2O3 was prepared by coprecipitation for use in chemical looping and hydrogen production. Cycling experiments in a fluidized bed showed that a material composed of 30 mol % ZrO2 and 70 mol % Fe 2O3 was capable of producing hydrogen with a consistent yield of 90 mol % of the stoichiometric amount over 20 cycles of reduction and oxidation at 1123 K. Here, the iron oxide was subjected to cycles consisting of nearly 100% reduction to Fe followed by reoxidation (with steam or CO 2 and then air) to Fe2O3. There was no contamination by CO of the hydrogen produced, at a lower detection limit of 500 ppm, when the conversion of Fe3O4 to Fe was kept below 90 mol %. A preliminary investigation of the reaction kinetics confirmed that the ZrO2 support does not inhibit rates of reaction compared with those observed with iron oxide alone. © 2012 American Chemical Society.
Resumo:
Abstract-Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art Banged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air Bow to be reduced and provide a means of identifying and assessing the various parameters that control the air Bow. The mathematical model is formulated in terms of the Stokes steam function, ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained Bow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions. | Mathematical modelling techniques are used to predict the axisymmetric air flow pattern developed by a state-of-the-art flanged exhaust hood which is reinforced by a turbulent radial jet flow. The high Reynolds number modelling techniques adopted allow the complexity of determining the hood's air flow to be reduced and provide a means of identifying and assessing the various parameters that control the air flow. The mathematical model is formulated in terms of the Stokes steam function, Ψ, and the governing equations of fluid motion are solved using finite-difference techniques. The injection flow of the exhaust hood is modelled as a turbulent radial jet and the entrained flow is assumed to be an inviscid potential flow. Comparisons made between contours of constant air speed and centre-line air speeds deduced from the model and all the available experimental data show good agreement over a wide range of typical operating conditions.
Resumo:
Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength. Herein, we use the lattice spring model (LSM) to simulate the globules and the cross-linked network. We also utilize our modified Hierarchical Bell model (MHBM) to simulate the rupture and reforming of N parallel bonds. By applying a tensile deformation, we demonstrate that the mechanical properties of the system are sensitive to the values of N in and N out, the respective values of N for the intra- and intermolecular bonds. We find that the strength of the material is mainly controlled by the value of N out, with the higher value of N out providing a stronger material. We also find that, if N in is smaller than N out, the globules can unfold under the tensile load before the sample fractures and, in this manner, can increase the ductility of the sample. Our results provide effective strategies for exploiting relatively weak, labile interactions (e.g., hydrogen bonding or the thiol/disulfide exchange reaction) in both the intra- and intermolecular bonds to tailor the macroscopic performance of the materials. © 2011 American Chemical Society.
Resumo:
The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication.