174 resultados para azimuthal angular modulation
Resumo:
We report an InGaAsP/InP phase modulator operating in the 1.5μm wavelength band. Phase modulation of 7.5°/mA and 1.7°/mA of injected current have been measured for TE and TM polarised light respectively at a signal wavelength of 1.52 μm.
Resumo:
4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for next-generation datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © 2011 Optical Society of America.
Resumo:
High-power (more than 500 mW) and high-speed (more than 1 Gbps) tapered lasers at 1060 nm are required in free-space optical communications and (at lower frequencies of around 100 MHz) display applications for frequency doubling to the green. On a 3 mm long tapered laser, we have obtained an open eye diagram at 1 Gbps, together with a high extinction ratio of 11 dB, an optical modulation amplitude of 530 mW, and a high modulation efficiency of 13 W/A. On a 4 mm-long tapered laser, we have obtained an open eye diagram at 700 Mbps, together with a high extinction ratio of 19 dB, a high optical modulation amplitude of 1.6 W, and a very high modulation efficiency of 19 W/A. On a 6 mm-long tapered laser, we have obtained a very high power of 5W CW and a very high static modulation efficiency of 59.8 W/A. © 2011 SPIE.
Resumo:
An 850 nm vertical-cavity surface-emitting laser is modulated at 32 Gb/s using pulse-amplitude modulation with four levels. Transmitter predistortion generates an optimized modulation waveform, which requires a receiver bandwidth of only 15 GHz. © 2011 OSA.
Resumo:
The technique of Subcarrier Modulation is assessed by statistical analysis as a viable solution to broadband data transmission over dispersion limited multimode fibre. It is shown that a suitable passband region for transmission of 2.5 Gb/s channels exists at 5 GHz in greater than 80% of worst-case fibres under standard SMF/MMF launch conditions. ©2002 Optical Society of America.
Resumo:
The carbon nanotube-liquid-crystal (CNT-LC) nanophotonic device is a class of device based on the hybrid combination of a sparse array of multiwall carbon nanotube electrodes grown on a silicon surface in a liquid-crystal cell. The multiwall carbon nanotubes act as individual electrode sites that spawn an electric-field profile, dictating the refractive index profile within the liquid crystal and hence creating a series of graded index profiles, which form various optical elements such as a simple microlens array. We present the refractive index and therefore phase modulation capabilities of a CNT-LC nanophotonic device with experimental results as well as computer modeling and potential applications.
Resumo:
Here we demonstrate a novel application that employs the ion exchange properties of conducting polymers (CP) to modulate the detection window of a CP based biosensor under electrical stimuli. The detection window can be modulated by electrochemically controlling the degree of swelling of the CP associated with ion transport in and out of the polymer. We show that the modulation in the detection window of a caffeine imprinted polypyrrole biosensor, and by extension other CP based biosensors, can be achieved with this mechanism. Such dynamic modulation in the detection window has great potential for the development of smart biosensors, where the sensitivity of the sensor can be dynamically optimized for a specific test solution.
Resumo:
The flexoelectro-optic effect describes the rotation of the optic axis of a short-pitch chiral nematic liquid crystal under the application of an electric field. We investigate the effect in the uniform standing helix, or "Grandjean" configuration. An in-plane electric field is applied. The director profile is determined numerically using a static one-dimensional continuum model with strong surface anchoring. The Berreman method is used to solve for plane-wave solutions to Maxwell's equations, and predict the optical properties of the resulting structure in general cases. By using a chiral nematic with short pitch between crossed polarizers an optical switch may be generated. With no applied field the configuration is nontransmissive at normal incidence, but becomes transmissive with an applied field. For this case, numerical results using the Berreman method are supplemented with an analytic theory and found to be in good agreement. The transmitted intensity as a function of tilt, the contrast ratio, and the tilt required for full intensity modulation are presented. The angular dependence of the transmission is calculated and the isocontrast curves are plotted. For typical material and cell parameters a switching speed of 0.017 ms and contrast ratio of 1500:1 at normal incidence are predicted, at a switch-on tilt of 41.5 degrees. Experimental verification of the analytic and numerical models is provided.