93 resultados para analytical methodologies
Resumo:
An analytical model for the electric field and the breakdown voltage (BV) of an unbalanced superjunction (SJ) device is presented in this paper. The analytical technique uses a superposition approach treating the asymmetric charge in the pillars as an excess charge component superimposed on a balanced charge component. The proposed double-exponentialmodel is able to accurately predict the electric field and the BV for unbalanced SJ devices in both punch through and non punch through conditions. The model is also reasonably accurate at extremely high levels of charge imbalance when the devices behave similarly to a PiN diode or to a high-conductance layer. The analytical model is compared against numerical simulations of charge unbalanced SJ devices and against experimental results. © 2009 IEEE.
Resumo:
Stone masonry spires are vulnerable to seismic loading. Computational methods are often used to predict the dynamic linear elastic response of masonry towers and spires, but this approach is only applicable until the first masonry joint begins to open, limiting the ability to predict collapse. In this paper, analytical modeling is used to investigate the uplift, rocking and collapse of stone spires. General equations for static equilibrium of the spire under lateral acceleration are first presented, and provide a reasonable lower bound for predicting collapse. The dynamic response is then considered through elastic modal analysis and rigid body rocking. Together, these methods are used to provide uplift curves and single impulse overturning collapse curves for a complete range of possible spire geometries. Results are used to evaluate the historic collapse of two specific stone spires. © 2012 Elsevier Ltd.
Resumo:
The amount of original imaging information produced yearly during the last decade has experienced a tremendous growth in all industries due to the technological breakthroughs in digital imaging and electronic storage capabilities. This trend is affecting the construction industry as well, where digital cameras and image databases are gradually replacing traditional photography. Owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks like monitoring an activity's progress and keeping evidence of the "as built" in case any disputes arise. So far, retrieval methodologies are done manually with the user being responsible for imaging classification according to specific rules that serve a limited number of construction management tasks. New methods that, with the guidance of the user, can automatically classify and retrieve construction site images are being developed and promise to remove the heavy burden of manually indexing images. In this paper, both the existing methods and a novel image retrieval method developed by the authors for the classification and retrieval of construction site images are described and compared. Specifically a number of examples are deployed in order to present their advantages and limitations. The results from this comparison demonstrates that the content based image retrieval method developed by the authors can reduce the overall time spent for the classification and retrieval of construction images while providing the user with the flexibility to retrieve images according different classification schemes.
Resumo:
This paper presents an analytical modeling technique for the simulation of long-range ultrasonic guided waves in structures. The model may be used to predict the displacement field in a prismatic structure arising from any excitation arrangement and may therefore be used as a tool to design new inspection systems. It is computationally efficient and relatively simple to implement, yet gives accuracy similar to finite element analysis and semi-analytical finite element analysis methods. The model has many potential applications; one example is the optimization of part-circumferential arrays where access to the full circumference of the pipe is restricted. The model has been successfully validated by comparison with finite element solutions. Experimental validation has also been carried out using an array of piezoelectric transducer elements to measure the displacement field arising from a single transducer element in an 88.9-mm-diameter pipe. Good agreement has been obtained between the two models and the experimental data.
Resumo:
In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildingswhichemitnetzerocarbonduringtheiroperationallifetime.However,inordertomeetthe80%targetitisnecessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrictembodiedcarbon,anumberofdifferentapproacheshavebeenmade.Thereareseveralexistingdatabasesofembodied carbonandembodiedenergy.Mostprovidedataforthematerialextractionandmanufacturingonly,the‘cradletofactorygate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.
Resumo:
Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation. © 2012 IEEE.
Analytical formulation of directly modulated OOFDM signals transmitted over an IM/DD dispersive link
Resumo:
We develop a new formulation for the form-finding of tensegrity structures in which the primary variables are the Cartesian components of element lengths. Both an analytical and a numerical implementation of the formulation are described; each require a description of the connectivity of the tensegrity, with the iterative numerical method also requiring a random starting vector of member force densities. The analytical and numerical form-finding of tensegrity structures is demonstrated through six examples, and the results obtained are compared and contrasted with those available in the literature to verify the accuracy and viability of the suggested methods. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies the low frequency vibrational behaviour of a submerged hull. The submerged hull is modelled as a finite fluid-loaded cylindrical shell closed at each end by circular plates. The external pressure acting on the hull due to the fluid loading is analytically calculated using an infinite model. Three excitation cases of the hull are considered. In the first model, an axial point force is applied at the centre of one end plate, giving rise to an axisymmetric case in which only the zeroth circumferential shell modes are excited. In the second model, an axial point force is applied at the edge of the end plate. In the third model, a radial point force is applied also at the edge of the end plate. In the second and third load cases, all cylindrical shell circumferential modes are excited. The effects of fluid loading and different excitation locations are studied. A more complex hull model including stiffeners and bulkheads is then examined. A smeared approach is used to analytically model the ring stiffeners. All load cases are again considered and the effects of the various influencing factors on the low frequency responses are described.
Resumo:
In order to account for interfacial friction of composite materials, an analytical model based on contact geometry and local friction is proposed. A contact area includes several types of microcontacts depending on reinforcement materials and their shape. A proportion between these areas is defined by in-plane contact geometry. The model applied to a fibre-reinforced composite results in the dependence of friction on surface fibre fraction and local friction coefficients. To validate this analytical model, an experimental study on carbon fibrereinforced epoxy composites under low normal pressure was performed. The effects of fibre volume fraction and fibre orientation were studied, discussed and compared with analytical model results. © Springer Science+Business Media, LLC 2012.
Resumo:
This paper presents an analytical formulation of frequency splitting observed in the elliptical modes of single crystal silicon (SCS) micromechanical disk resonators. Taking the anisotropic elasticity of SCS into account, new formulae for computing modal mass and modal stiffness are first derived for accurate prediction of the modal frequency. The derived results are in good agreement with finite element simulation, showing a factor of 10 improvement in the prediction accuracy as compared to using the formula for the isotropic case. In addition, the analysis successfully explains the effect of anisotropy on the modal frequency splitting of primary elliptical modes, for which the maximum modal displacement is aligned with the directions of maximum (1 1 0) and minimum (1 0 0) elasticity respectively on a (1 0 0) SCS wafer. The measured frequency splitting of other degenerate modes is due to the manufacturing imperfections. © 2014 IOP Publishing Ltd.