133 resultados para amnion fluid
Resumo:
The fluid dynamic operation of a valveless pulse combustor has been studied experimentally and numerically. Through phase-locked chemiluminescence and pressure measurements it is shown that mechanical energy is created periodically in the flame surface, with an efficiency of 1.6%. This mechanical energy leaves the pulse combustor through unsteady jets at the aerovalve inlet and the tailpipe exit stations. Two thermodynamically distinct flows are identified: a flow that is transported from inlet to exit and participates in combustion along the way, and a flow that is ingested and then ejected from the combustor without undergoing combustion. It is the latter of these two flows which has the greatest quantity of net work done on it. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. In this paper, we focus on an inflatable tension cone design that has potential advantages over other geometries. A computational fluid-structure interaction model of a tension cone is employed to investigate the behavior of the inflatable aeroshell at supersonic speeds for conditions matching recent experimental results. A parametric study is carried out to investigate the deflections of the tension cone as a function of inflation pressure of the torus at a Mach of 2.5. Comparison of the behavior of the structure, amplitude of deformations, and determined loads are reported. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling). In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature.The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990), it has been assumed that the fluidised gas-particle medium is isothermal.The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990). Their assumption that the system is isothermal also appears to be valid.
Resumo:
An analytical model is presented to describe the vibration of a truncated conical shell with fluid loading in the low frequency range. The solution for the dynamic response of the shell is presented in the form of a power series. Fluid loading is taken into account by dividing the shell into narrow strips which are considered to be locally cylindrical. Analytical results are presented for different boundary conditions and have been compared with the computational results from a boundary element model. Limitations of the model to the low frequency range are discussed.
Structural and acoustic responses of a fluid-loaded cylindrical hull with structural discontinuities
Resumo:
For this new edition, author S. Larry Dixon is joined by Cesare Hall from the University of Cambridge, whose diverse background of teaching, research and work ...
Resumo:
Frequency entrainment and nonlinear synchronization are commonly observed between simple oscillatory systems, but their occurrence and behavior in continuum fluid systems are much less well understood. Motivated by possible applications to geophysical fluid systems, such as in atmospheric circulation and climate dynamics, we have carried out an experimental study of the interaction of fully developed baroclinic instability in a differentially heated, rotating fluid annulus with an externally imposed periodic modulation of the thermal boundary conditions. In quasiperiodic and chaotic amplitude-modulated traveling wave regimes, the results demonstrate a strong interaction between the natural periodic modulation of the wave amplitude and the externally imposed forcing. This leads to partial or complete phase synchronization. Synchronization effects were observed even with very weak amplitudes of forcing, and were found with both 1:1 and 1:2 frequency ratios between forcing and natural oscillations.
Resumo:
The dynamics of a fluid in a vertical tube, subjected to an oscillatory pressure gradient, is studied experimentally for both a Newtonian and a viscoelastic shear-thinning fluid. Particle image velocimetry is used to determine the two-dimensional velocity fields in the vertical plane of the tube axis, in a range of driving amplitudes from 0.8 to 2.5 mm and of driving frequencies from 2.0 to 11.5 Hz. The Newtonian fluid exhibits a laminar flow regime, independent of the axial position, in the whole range of drivings. For the complex fluid, instead, the parallel shear flow regime exhibited at low amplitudes [Torralba, Phys. Rev. E 72, 016308 (2005)] becomes unstable at higher drivings against the formation of symmetric vortices, equally spaced along the tube. At even higher drivings the vortex structure itself becomes unstable, and complex nonsymmetric structures develop. Given that inertial effects remain negligible even at the hardest drivings (Re < 10(-1)), it is the complex rheology of the fluid that is responsible for the instabilities observed. The system studied represents an interesting example of the development of shear-induced instabilities in nonlinear complex fluids in purely parallel shear flow.