137 resultados para accumulative test item
Resumo:
Two shock-capturing methods are considered. One is based on a standard conservative Roe scheme with van Leer's MUSCL variable extrapolation method applied to characteristic variables and a Runge-Kutta time stepping scheme. The other is based on the novel CABARET space-time scheme, which uses two sets of staggered variables, one for the conservation step and the other for characteristic splitting into local Riemann invariants. The methods are compared in a range of 2-D inviscid compressible flow test cases. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The use of microbial induced precipitation as a soil improvement technique has been growing in geotechnical domains where ureolytic bacteria that raise the pH of the system and induce calcium carbonate (CaCO3) precipitation are used. For many applications, it is useful to assess the degree of CaCO 3 precipitation by non-destructive testing. This study investigates the feasibility of S-wave velocity measurements to evaluate the amount of calcite precipitation by laboratory testing. Two sets of cemented specimen were tested. The first were samples terminated at different stages of cementation. The second were samples that went through different chemical treatments. These variations were made to find out if these factors would affect the S-wave velocity- cementation relationship. If chemical reaction efficiency was assumed to be constant throughout each test, the relationship between S-wave velocity (Vs) and the amount of CaCO3 precipitation was found to be approximately linear. This correlation between S-wave velocity and calcium carbonate precipitation validates its use as an indicator of the amount of calcite precipitation © 2011 ASCE.
Application of scalar dissipation rate modelling to industrial burners in partially premixed regimes
Resumo:
The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.
Resumo:
A host of methods and tools to support designing are being developed in Cambridge EDC. These range from tools for design management to those for the generation and selection of design ideas, layouts, materials and production processes. A project, to develop a device to improve arm mobility of muscular dystrophy sufferers, is undertaken as a test-bed to evaluate and improve these methods and tools as well as to observe and modify its design and management processes. This paper presents the difficulties and advantages of using design methods and tools within this rehabilitation design context, with special focus on the evolution of the designs, tools, and management processes.
Resumo:
Biological sensing is explored through novel stable colloidal dispersions of pyrrole-benzophenone and pyrrole copolymerized silica (PPy-SiO(2)-PPyBPh) nanocomposites, which allow covalent linking of biological molecules through light mediation. The mechanism of nanocomposite attachment to a model protein is studied by gold labeled cholera toxin B (CTB) to enhance the contrast in electron microscopy imaging. The biological test itself is carried out without gold labeling, i.e., using CTB only. The protein is shown to be covalently bound through the benzophenone groups. When the reactive PPy-SiO(2)-PPyBPh-CTB nanocomposite is exposed to specific recognition anti-CTB immunoglobulins, a qualitative visual agglutination assay occurs spontaneously, producing as a positive test, PPy-SiO(2)-PPyBPh-CTB-anti-CTB, in less than 1 h, while the control solution of the PPy-SiO(2)-PPyBPh-CTB alone remained well-dispersed during the same period. These dispersions were characterized by cryogenic transmission microscopy (cryo-TEM), scanning electron microscopy (SEM), FTIR and X-ray photoelectron spectroscopy (XPS).
Resumo:
The drive to reduce carbon emissions from domestic housing has led to a recent shift of focus from new-‐build to retrofit. However there are two significant differences. Firstly more work is needed to retrofit existing housing to the same energy efficiency standards as new-‐build. Secondly the remaining length of service life is potentially shorter. This implies that the capital expenditure – both financial and carbon -‐ of retrofit may be disproportionate to the savings gained over the remaining life. However the Government’s definition of low and zero carbon continues to exclude the capital (embodied) carbon costs of construction, which has resulted in a lack of data for comparison. The paper addresses this gap by reporting the embodied carbon costs of retrofitting four individual pilot properties in Rampton Drift, part of an Eco-‐Town Demonstrator Project in Cambridgeshire. Through collecting details of the materials used and their journeys from manufacturer to site, the paper conducts a ‘cradle-‐to-‐gate’ life cycle carbon assessment for each property. The embodied carbon figures are calculated using a software tool being developed by the Centre for Sustainable Development at the University of Cambridge. The key aims are to assess the real embodied carbon costs of retrofit of domestic properties, and to test the new tool; it is hoped that the methodology, the tool and the specific findings will be transferable to other projects. Initial changes in operational energy as a result of the retrofit works will be reported and compared with the embodied carbon costs when presenting this paper.
Resumo:
Optimisation of cooling systems within gas turbine engines is of great interest to engine manufacturers seeking gains in performance, efficiency and component life. The effectiveness of coolant delivery is governed by complex flows within the stator wells and the interaction of main annulus and cooling air in the vicinity of the rim seals. This paper reports the development of a test facility which allows the interaction of cooling air and main gas paths to be measured at conditions representative of those found in modern gas turbine engines. The test facility features a two stage turbine with an overall pressure ratio of approximately 2.6:1. Hot air is supplied to the main annulus using a Rolls-Royce Dart compressor driven by an aero-derivative engine plant. Cooling air can be delivered to the stator wells at multiple locations and at a range of flow rates which cover bulk ingestion through to bulk egress. The facility has been designed with adaptable geometry to enable rapid changes of cooling air path configuration. The coolant delivery system allows swift and accurate changes to the flow settings such that thermal transients may be performed. Particular attention has been focused on obtaining high accuracy data, using a radio telemetry system, as well as thorough through-calibration practices. Temperature measurements can now be made on both rotating and stationary discs with a long term uncertainty in the region of 0.3 K. A gas concentration measurement system has also been developed to obtain direct measurement of re-ingestion and rim seal exchange flows. High resolution displacement sensors have been installed in order to measure hot running geometry. This paper documents the commissioning of a test facility which is unique in terms of rapid configuration changes, non-dimensional engine matching and the instrumentation density and resolution. Example data for each of the measurement systems is presented. This includes the effect of coolant flow rate on the metal temperatures within the upstream cavity of the turbine stator well, the axial displacement of the rotor assembly during a commissioning test, and the effect of coolant flow rate on mixing in the downstream cavity of the stator well. Copyright © 2010 by ASME.
Resumo:
This paper describes an experimental study of a new form of prestressed concrete beam. Aramid Fiber Reinforced Polymers (AFRPs) are used to provide compression confinement in the form of interlocking circular spirals, while external tendons are made from parallel-lay aramid ropes. The response shows that the confinement of the compression flange significantly increases the ductility of the beam, allowing much better utilization of the fiber strength. The failure of the beam is characterized by rupture of spiral confinement reinforcement.
Resumo:
A sensor for chemical species or biological species or radiation presenting to test fluid a polymer composition comprises polymer and conductive filler metal, alloy or reduced metal oxide and having a first level of electrical conductance when quiescent and being convertible to a second level of conductance by change of stress applied by stretching or compression or electric field, in which the polymer composition is characterised by at least one of the features in the form of particles at least 90% w/w held on a 100 mesh sieve; and/or comprising a permeable body extending across a channel of fluid flow; and/or affording in-and-out diffusion of test fluid and/or mechanically coupled to a workpiece of polymer swellable by a constituent of test fluid.
Resumo:
Brittleness is the unintended, but inevitable consequence of producing a transparent ceramic for architectural applications such as the soda-lime glass. Its tensile strength is particularly sensitive to surface imperfections, such as that from natural weathering and malicious damage. Although a significant amount of testing of new glass has been carried out, there has been surprisingly little testing on weathered glass. Due to the variable nature of the causes of surface damage, the lack of data on weathered glass leads to a considerable degree of uncertainty in the long-term strength of exposed glass. This paper presents the results of recent tests on weathered annealed glass which has been exposed to natural weathering for more than 20 years. The tests include experimental investigations using the co-axial ring setup as well as optical and atomic force microscopy of the glass surfaces. The experimental data from these tests is subsequently used to extend existing fracture mechanics-based models to predict the strength of weathered glass. It is shown that using an automated approach based directly on finite element analysis results can give an increase in effective design strength in the order of 70 to 100% when compared to maximum stress methods. It is also shown that by combining microscopy and strength test results, it is possible to quantitatively characterise the damage on glass surfaces.