80 resultados para Wynn, Elliott J.
Resumo:
Managing change can be challenging due to the high levels of interdependency in concurrent engineering processes. A key activity in engineering change management is propagation analysis, which can be supported using the change prediction method. In common with most other change prediction approaches, the change prediction method has three important limitations: L1: it depends on highly subjective input data; L2: it is capable of modelling 'generalised cases' only and cannot be; customised to assess specific changes; and L3: the input data are static, and thus, guidance does not reflect changes in the design. This article contributes to resolving these limitations by incorporating interface information into the change prediction method. The enhanced method is illustrated using an example based on a flight simulator. © The Author(s) 2013.
Resumo:
Engineering changes (ECs) are essential in complex product development, and their management is a crucial discipline for engineering industries. Numerous methods have been developed to support EC management (ECM), of which the change prediction method (CPM) is one of the most established. This article contributes a requirements-based benchmarking approach to assess and improve existing methods. The CPM is selected to be improved. First, based on a comprehensive literature survey and insights from industrial case studies, a set of 25 requirements for change management methods are developed. Second, these requirements are used as benchmarking criteria to assess the CPM in comparison to seven other promising methods. Third, the best-in-class solutions for each requirement are investigated to draw improvement suggestions for the CPM. Finally, an enhanced ECM method which implements these improvements is presented. © 2013 © 2013 The Author(s). Published by Taylor & Francis.
Resumo:
The concepts of reliability, robustness, adaptability, versatility, resilience and flexibility have been used to describe how a system design can mitigate the likely impact of uncertainties without removing their sources. With the increasing number of publications on designing systems to have such ilities, there is a need to clarify the relationships between the different ideas. This short article introduces a framework to compare these different ways in which a system can be insensitive to uncertainty, clarifying their meaning in the context of complex system design. We focus on relationships between the ilities listed above and do not discuss in detail methods to design-for-ilities. © 2013 The Author(s). Published by Taylor & Francis.
Resumo:
This paper aims to elucidate practitioners' understanding and implementation of Lean in Product Development (LPD). We report on a workshop held in the UK during 2012. Managers and engineers from four organizations discussed their understanding of LPD and their ideas and practice regarding management and assessment of value and waste. The study resulted in a set of insights into current practice and lean thinking from the industry perspective. Building on this, the paper introduces a balanced value and waste model that can be used by practitioners as a checklist to identify issues that need to be considered when applying LPD. The main results indicate that organizations tend to focus on waste elimination rather than value enhancement in LPD. Moreover, the lean metrics that were discussed by the workshop participants do not link the strategic level with the operational one, and poorly reflect the value and waste generated in the process. Future directions for research are explored, and include the importance of a balanced approach considering both value and waste when applying LPD, and the need to link lean metrics with value and waste levels.