78 resultados para Wheatstone bridges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a mechanism by which nanoscale filaments self-assemble into asymmetric aggregates by elastocapillary action. Specifically, capillary rise of liquid into an asymmetric pattern of vertically aligned filaments causes the filaments to deflect laterally during elastocapillary densification. We quantitatively show that the lateral deflection can be controlled precisely by the pattern shape and the coupling strength among the filaments. We exploit this mechanism to fabricate asymmetric micropillars and multidirectional bridges of densely packed carbon nanotubes. Analogous behavior occurs as biological filaments interact with liquids, and these findings enable scalable fabrication of anisotropic filament assemblies for manipulating surface interactions between solids and liquids. © 2010 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of strong earthquakes near Christchurch, New Zealand, occurred between September 2010 and December 2011, causing widespread liquefaction throughout the city's suburbs. Lateral spreading developed along the city's Avon River, damaging many of the bridges east of the city centre. The short-to medium-span bridges exhibited a similar pattern of deformation, involving back-rotation of their abutments and compression of their decks. By explicitly considering the rotational equilibrium of the abutments about their point of contact with the rigid bridge decks, it is shown that relatively small kinematic demands from the laterally spreading backfill soil are needed to initiate pile yielding, and that this mode of deformation should be taken into account in the design of the abutments and abutment piles.