94 resultados para Ventral tegmental area
Resumo:
This paper presents a long range and effectively error-free ultra high frequency (UHF) radio frequency identification (RFID) interrogation system. The system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. The novel technique is first theoretically modelled using a Rician fading channel. It is shown that conventional RFID systems suffer from multi-path fading resulting in nulls in radio environments. We, for the first time, demonstrate that the nulls can be moved around by varying the phase and frequency of the interrogation signals in a multi-antenna system. As a result, much enhanced coverage can be achieved. A proof of principle prototype RFID system is built based on an Impinj R2000 transceiver. The demonstrator system shows that the new approach improves the tag detection accuracy from <50% to 100% and the tag backscatter signal strength by 10dB over a 20 m x 9 m area, compared with a conventional switched multi-antenna RFID system.
Resumo:
We examine the role of heat source geometry in determining rates of airflow and thermal stratification in natural displacement ventilation flows. We modify existing models to account for heat sources of finite (non-zero) area, such as formed by a sun patch warming the floor of a room. Our model allows for predictions of the steady stratification and ventilation flow rates that develop in a room due to a circular heat source at floor level. We compare our theoretical predictions with predictions for the limiting cases of a point source of heat (yielding a stratified interior), and a uniformly heated floor (yielding a mixed interior). Our theory shows a smooth transition between these two limits, which themselves result in extremes of ventilation, as the ratio of the heat source radius to the room height increases. Our model for the transition from displacement to mixing ventilation is compared to previous work and demonstrates that the transition can occur for smaller sources than previously thought, particularly for rooms with large floor area compared to ceiling height. © 2009 Elsevier Ltd.
Resumo:
An improved technique for transferring large area graphene grown by chemical vapor deposition on copper is presented. It is based on mechanical separation of the graphene/copper by H2 bubbles during H2O electrolysis, which only takes a few tens of seconds while leaving the copper cathode intact. A semi-rigid plastic frame in combination with thin polymer layer span on graphene gives a convenient way of handling- and avoiding wrinkles and holes in graphene. Optical and electrical characterizations prove the graphene quality is better than that obtained by traditional wet etching transfer. This technique appears to be highly reproducible and cost efficient. © 2013 American Institute of Physics.
Resumo:
Humans are creatures of routine and habit. When faced with situations in which a default option is available, people show a consistent tendency to stick with the default. Why this occurs is unclear. To elucidate its neural basis, we used a novel gambling task in conjunction with functional magnetic resonance imaging. Behavioral results revealed that participants were more likely to choose the default card and felt enhanced emotional responses to outcomes after making the decision to switch. We show that increased tendency to switch away from the default during the decision phase was associated with decreased activity in the anterior insula; activation in this same area in reaction to "switching away from the default and losing" was positively related with experienced frustration. In contrast, decisions to choose the default engaged the ventral striatum, the same reward area as seen in winning. Our findings highlight aversive processes in the insula as underlying the default bias and suggest that choosing the default may be rewarding in itself.
Resumo:
The fabrication and functionality of a 21 cm graphene-based transverse electron emission display panel is presented. A screen-printed triode edge electron emission geometry has been developed based on chemical vapor deposited (CVD) graphene supported on vertically aligned carbon nanotubes (CNT) necessary to minimize electrostatic shielding induced by the proximal bulk substrate. Integrated ZnO tetrapod electron scatterers have been shown to increase the emission efficiency by more than 90%. Simulated electron trajectories validate the observed emission characteristics with driving voltages less than 60 V. Fabricated display panels have shown real-time video capabilities that are hysteresis free (<0.2%), have extremely stable lifetimes (<3% variation over 10 h continuous operation) in addition to rapid temporal responses (<1 ms). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.
Resumo:
Experimental demonstration of lasing in a broad area twin-contact semiconductor laser which operates as a phase-conjugation (PC) mirror in an external cavity configuration is reported. This allows "self-aligned" and self-pumped spatially nondegenerate four-wave mixing to be achieved without the need for external optical signals. The external cavity laser system is very insensitive to tilt misalignments of the external mirror in the PC regime and exhibits very good mechanical stability. The resonant frequency of the external cavity lies in the GHz range which corresponds to a subnanosecond time response of phase conjugation processes in the semiconductor laser. © 1997 American Institute of Physics.
Resumo:
This paper reports on the use of a parallelised Model Predictive Control, Sequential Monte Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory control in air traffic management specifically around the terminal manoeuvring area of an airport. The target problem is nonlinear, highly constrained, non-convex and uses a single decision-maker with multiple aircraft. The implementation includes a spatio-temporal wind model and rolling window simulations for realistic ongoing scenarios. The method is capable of handling arriving and departing aircraft simultaneously including some with very low fuel remaining. A novel flow field is proposed to smooth the approach trajectories for arriving aircraft and all trajectories are planned in three dimensions. Massive parallelisation of the algorithm allows solution speeds to approach those required for real-time use.
Resumo:
Low-cost optical switches based on SLMs have conventionally been considered unsuitable for packet switching due to slow reconfiguration time. In this paper, we demonstrate that the constraint of SLM reconfiguration time in a hybrid three-stage electronic/optical switching node architecture can be compensated through the utilization of MPLS label switching mechanism to achieve the best performance for SAN applications. © 2012 SEE.
Resumo:
The use of large size Si substrates for epitaxy of nitride light emitting diode (LED) structures has attracted great interest because Si wafers are readily available in large diameter at low cost. In addition, such wafers are compatible with existing processing lines for the 6-inch and larger wafer sizes commonly used in the electronics industry. With the development of various methods to avoid wafer cracking and reduce the defect density, the performance of GaN-based LED and electronic devices has been greatly improved. In this paper, we review our methods of growing crack-free InGaN-GaN multiple quantum well (MQW) LED structures of high crystalline quality on Si(111) substrates. The performance of processed LED devices and its dependence on the threading dislocation density were studied. Full wafer-level LED processing using a conventional 6-inch III-V processing line is also presented, demonstrating the great advantage of using large-size Si substrates for mass production of GaN LED devices.