109 resultados para Vehicle occupancy.
Resumo:
A method is presented for the digital simulation of multiple degrees-of-freedom lumped parameter vibrating systems with arbitrary constitutive elements in an inertial frame of reference. The geometry of the system is treated independently of the constitutive elements and as a result nonlinear (time domain) or linearised (frequency domain) calculations may be performed using a single input description. The method is used to simulate a 3-axle rigid heavy commercial vehicle for harsh vibrating conditions. Some of the assumptions to which the calculations are sensitive are examined. Agreement between the response of a 3-dimensional whole vehicle model and measurements on the test vehicle is satisfactory.
Resumo:
The literature relating to road surface failure and design is briefly reviewed and the conventional methods for assessing the road damaging effects of dynamic tire forces are examined. A new time domain technique for analyzing dynamic tire forces and four associated road damage criteria are presented. The force criteria are used to examine the road damaging characteristics of a simple tandem-axle vehicle model for a range of speed and road roughness conditions. It is concluded that for the proposed criteria, the theoretical service life of road surfaces that are prone to fatigue failure may be reduced significantly by the dynamic component of wheel forces. The damage done to approximately five per cent of the road surface area during the passage of a theoretical model vehicle at typical highway speeds may be increased by as much as four times.
Resumo:
A new experimental articulated vehicle with computer-controlled suspensions is used to investigate the benefits of active roll control for heavy vehicles. The mechanical hardware, the instrumentation, and the distributed control architecture are detailed. A simple roll-plane model is developed and validated against experimental data, and used to design a controller based on lateral acceleration feedback. The controller is implemented and tested on the experimental vehicle. By tilting both the tractor drive axle and the trailer inwards, substantial reductions in normalized lateral load transfer are obtained, both in steady state and transient conditions. Power requirements are also considered. © IMechE 2005.
Resumo:
This paper describes the design considerations for a proposed aerodynamic characterization facility (ACF) for micro aerial vehicles (MAVs). This is a collaborative effort between the Air Force Research Laboratory Munitions Directorate (AFRL/MN) and the University of Florida Research and Engineering Education Facility (UF/REEF). The ACF is expected to provide a capability for the characterization of the aerodynamic performance of future MAVs. This includes the ability to gather the data necessary to devise control strategies as well as the potential to investigate aerodynamic 'problem areas' or specific failings. Since it is likely that future MAVs will incorporate advanced control strategies, the facility must enable researchers to critically assess such novel methods. Furthermore, the aerodynamic issues should not be seen (and tested) in isolation, but rather the facility should be able to also provide information on structural responses (such as aeroelasticity) as well as integration issues (say, thrust integration or sensor integration). Therefore the mission for the proposed facility ranges form fairly basic investigations of individual technical issues encountered by MAVs (for example an evaluation of wing shapes or control effectiveness) all the way to testing a fully integrated vehicle in a flight configuration for performance evaluation throughout the mission envelope.
Resumo:
A semi-active truck damper was developed in conjunction with a commercial shock absorber manufacturer. A linearized damper model was developed for control system design purposes. Open- and closed-loop damper force tracking control was implemented, with tests showing that an open-loop approach gave the best compromise between response speed and accuracy. A hardware-in-the-loop test facility was used to investigate performance of the damper when combined with a simulated quarter-car model. The input to the vehicle model was a set of randomly generated road profiles, each profile traversed at an appropriate speed. Modified skyhook damping tests showed a simultaneous improvement over the optimum passive case of 13 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. Full-scale vehicle tests of the damper on a heavy tri-axle trailer were carried out. Implementation of modified skyhook damping yielded a simultaneous improvement over the optimum passive case of 8 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. © IMechE 2008.
Resumo:
A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.
Resumo:
A receding horizon steering controller is presented, capable of pushing an oversteering nonlinear vehicle model to its handling limit while travelling at constant forward speed. The controller is able to optimise the vehicle path, using a computationally efficient and robust technique, so that the vehicle progression along a track is maximised as a function of time. The resultant method forms part of the solution to the motor racing objective of minimising lap time. © 2011 AACC American Automatic Control Council.
Reducing Motor Vehicle Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota
Resumo:
Previous research has shown that hydraulic systems offer potentially the lightest and smallest regenerative braking technology for heavy goods vehicles. This paper takes the most practical embodiment of a hydraulic system for an articulated urban delivery vehicle and investigates the best specification for the various components, based on a simulated stop-start cycle. The potential energy saving is quantified. © 2011 IEEE.