125 resultados para Three-dimensional studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional (3D) optical microscopy based on integral imaging techniques is limited mainly by diffraction effects and the pitch of the microlens array used to sample the specimen. We integrate nanotechnology to the integral imaging technique and demonstrate a nanophotonic 3D microscope, where a nanophotonic lens array is used to finely sample the specimen. The resolution limitation due to diffraction is reduced by capturing images before the diffraction effects predominate and hence overcomes the bottleneck of achieving high resolution in an integral imaging 3D microscope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review is about the development of three-dimensional (3D) ultrasonic medical imaging, how it works, and where its future lies. It assumes knowledge of two-dimensional (2D) ultrasound, which is covered elsewhere in this issue. The three main ways in which 3D ultrasound may be acquired are described: the mechanically swept 3D probe, the 2D transducer array that can acquire intrinsically 3D data, and the freehand 3D ultrasound. This provides an appreciation of the constraints implicit in each of these approaches together with their strengths and weaknesses. Then some of the techniques that are used for processing the 3D data and the way this can lead to information of clinical value are discussed. A table is provided to show the range of clinical applications reported in the literature. Finally, the discussion relating to the technology and its clinical applications to explain why 3D ultrasound has been relatively slow to be adopted in routine clinics is drawn together and the issues that will govern its development in the future explored.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that the apparent benefits of a two-layer stacked SOI system, i.e. packing density and speed improvements, are less than could be expected in the context of a VLSI requirement [1]. In this project the stacked SOI system has been identified as having major application in the realization of integrated, mixed technology systems. Zone-melting-recrystallization (ZMR) with lasers and electron beams have been used to produce device quality SOI material and a small test-bed circuit has been designed as a demonstration of the feasibility of this approach. © 1988.